Allocation Characterizes Polyvariance

A Unified Methodology for Polyvariant Control-Flow Analysis

Thomas Gilray

Michael D. Adams

Matthew Might

University of Utah, USA
{tgilray,adamsmd,might}@cs.utah.edu

Abstract

The polyvariance of a static analysis is the degree to which it struc-
turally differentiates approximations of program values. Polyvari-
ant techniques come in a number of different flavors that repre-
sent alternative heuristics for managing the trade-off an analysis
strikes between precision and complexity. For example, call sen-
sitivity supposes that values will tend to correlate with recent call
sites, object sensitivity supposes that values will correlate with the
allocation points of related objects, the Cartesian product algorithm
supposes correlations between the values of arguments to the same
function, and so forth.

In this paper, we describe a unified methodology for implement-
ing and understanding polyvariance in a higher-order setting (i.e.,
for control-flow analyses). We do this by extending the method
of abstracting abstract machines (AAM), a systematic approach
to producing an abstract interpretation of abstract-machine seman-
tics. AAM eliminates recursion within a language’s semantics by
passing around an explicit store, and thus places importance on the
strategy an analysis uses for allocating abstract addresses within
the abstract heap or store. We build on AAM by showing that the
design space of possible abstract allocators exactly and uniquely
corresponds to the design space of polyvariant strategies. This al-
lows us to both unify and generalize polyvariance as tunings of a
single function. Changes to the behavior of this function easily re-
capitulate classic styles of analysis and produce novel variations,
combinations of techniques, and fundamentally new techniques.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors and Optimization

Keywords Polyvariance; Static analysis; Control-flow analysis;
Abstract interpretation; Abstract allocation; Context sensitivity

1. Introduction

In the past 35 years since call-sensitive data-flow analysis was in-
troduced by Sharir and Pnueli [51], a wide variety of both subtly
and essentially distinct forms of polyvariant static analysis have
been explored in the literature. The polyvariance of a static anal-
ysis, broadly construed, is the degree to which program values at

Copyright © ACM, 2016. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redistri-
bution. The definitive version was published in ICFP 16: Proceedings of the
21st ACM SIGPLAN Conference on Functional Programming, September 2016,
http://dx.doi.org/10.1145/2951913.2951936.

ICFP 16, September 18-24, 2016, Nara, Japan.

Copyright © 2016 ACM ... $15.00.

http://dx.doi.org/10.1145/2951913.2951936

runtime are broken into a multiplicity of distinct static approxima-
tions of their dynamic behavior. This is consistent with previous
uses of the term, although the exact nature of its broad diversity of
uses has not previously been well explored or formalized for any
particular methodology.

For example, consider a function applied on different values
across more than one call site—an identity function applied on both
true and false in Racket [48]:

... °(let ([id (lambda (x) x)1)
L(id #f)
2(id #t))

A monovariant analysis is one which maintains only a single struc-
turally distinct approximation, a single variant, or a single flow set
(in the nomenclature of flow analysis) that over-approximates the
behavior of all possible values for each syntactic variable or inter-
mediate expression. Although the variable x may become bound to
#f when called from e; (i.e., the first call site, * (id #f)) and #t
when called from e (i.e., the second call site, ?(id #t)), a mono-
variant analysis will merge these values and produce only a single
flow set {#t, #f} for x (or perhaps {bool}, T, etc., depending on
the representation of abstract values and widening used).

A more polyvariant analysis by contrast, would allow for a
larger number of distinct flow sets, a choice which has the poten-
tial to increase analysis complexity, analysis precision, or both, de-
pending on the target of analysis. The seminal and still most widely
used form of polyvariance, k-call sensitivity, distinguishes one con-
text for each call trace or call history of length k that precedes a
syntactic binding site. In our example above, even a 1-call sensitive
analysis (e.g., Shivers’ 1-CFA) would be enough to keep the values
#t and #£f from merging in a single flow set for x. A 1-call sensitive
analysis produces two distinct flow sets for x in this program. One
is unique to both x and the first call site e, the other is unique to
both x and the second call site ez.

A wide gamut of polyvariant techniques has been discussed in
the literature [1, 2, 4, 6, 14-16, 19, 20, 22, 26, 29-33, 41-44, 51—
53, 59, 60], comprised of both subtle variations and completely dis-
parate strategies from methods and applications like type systems,
abstract interpretations, and constraint-based analyses. While many
of these designs and presentations share elements in common, each
was designed and implemented separately with rather little work
focused on unifying or connecting distinct implementations and
strategies [2, 14, 53].

We present a new methodology which both unifies and gener-
alizes the myriad strategies for polyvariance as tunings of a single
function, an abstract allocator. We show that the design space of
polyvariance uniquely and exactly corresponds to the design space
of tunings for this function and that no possible tuning can lead to
an unsound analysis. All classic flavors of polyvariance can be eas-
ily recapitulated using our methodology and we are able to derive

novel variations by generalizing each. By proving that no tuning of
allocation is unsound, and by permitting arbitrary instrumentation
of a core flow analysis to guide the behavior of this function, we are
able to show that all conceivable sound strategies for polyvariance
may be implemented in a parametric abstract semantics.

1.1 Contributions
We make the following novel contributions:

1. We import the a posteriori soundness approach [38] to show
that all possible allocators yield a sound analysis and explain
why allocation uniquely allows this exceptionally liberal sound-
ness process.

2. We formalize the meaning of the term polyvariant for AAM-
style flow analyses in terms of possible strategies for allocation.
We show how all conceivable sound strategies for polyvariance
are exactly encompassed by the design space of allocators.

3. We apply this perspective to resolving an ambiguity in the
original formulation of k-CFA.

4. We survey a variety of classic styles of polyvariance and show
how each can be encoded as an allocator. We further illustrate
how our new perspective permits each to be easily generalized
or combined with other strategies.

5. We show that the design space of strategies for allocation even
encompasses the store sensitivity lost through store widening
and the environment sensitivity lost through closure conversion.

1.2 Outline

Section 2 introduces the wide design space of existing strategies
for polyvariance and explores the central challenges in designing a
suitable (effective and efficient) form of polyvariance, motivating
our new approach.

Section 3 explains the main idea of our approach informally and
introduces the required insights which make it possible.

Section 4 reviews AAM, formalizing a concrete semantics and
an abstract semantics which approximates it. We discuss crucial
concepts such as store widening and soundness.

Section 5 discusses the role of allocation within AAM, presents
the a posteriori soundness theorem (liberalizing our previous
soundness constraints to cover all tunings of allocation) and ex-
plains why allocation is uniquely suitable for this process. We
generalize the framework of Section 4 to a parametric semantics
that encompasses all possible allocation behaviors and explain the
importance of leaving instrumentation as an open parameter.

Section 6 surveys a variety of fundamental styles of polyvari-
ance, encoding each within our parametric semantics, and showing
how each can be generalized to new styles of polyvariance or com-
bined with other strategies. We show that no degree of precision lost
from either store widening or closure conversion is fundamentally
out of reach when using our method (these degrees of precision are
also forms of polyvariance within our framework).

2. Myriad Styles of Polyvariance

Following Sharir and Pnueli [51], call sensitivity was used by
Jones, Muchnick, and Harrison [19, 26] in the ‘80s and then gener-
alized to control-flow analysis of higher-order languages (k-CFA)
by Shivers [52]. The ‘90s saw a broader exploration of different
strategies for polyvariance, including a polynomial-time approxi-
mation for call-sensitive higher-order flow analysis by Jagannathan
and Weeks [21] and Agesen’s Cartesian product algorithm (CPA)
[1], an enhancement for type recovery algorithms. A variety of
polyvariant type systems emerged, the preponderance of which are
call sensitive [2, 4, 20, 29, 43, 44, 59]. Ideas from type systems

also found their way back into flow analyses [2, 7]; for exam-
ple, inspired by let-polymorphism, Wright and Jagannathan [60]
presents polymorphic splitting, a style of call sensitivity that varies
the degree of sensitivity on a per-function basis using the 1et-depth
of each function as its heuristic. Milanova et al. [41] introduces an-
other very different style of polyvariance, object sensitivity, which
uses a history of the allocation points of objects to differentiate
program contexts. Like call sensitivity, object sensitivity forms a
well-ordered design space of increasingly precise analyses that may
reach concrete (precise) evaluation only in its limit. Growing evi-
dence (particularly for points-to analysis of Java) supports the idea
that object-sensitive analyses tend to be more effective and efficient
than call-sensitive ones for object-oriented targets [6, 30-33, 42].
Recently, Smaragdakis et al. [53] has generalized object sensitivity
to a wider range of variations and introduced a new approximation
of these called type sensitivity.

Different styles of polyvariance may be viewed as different
heuristics for managing the trade-off between complexity and pre-
cision in a static analysis. Call sensitivity supposes that program
values will tend to correlate with recent call sites (or the surround-
ing few stack frames) and allows for more complexity in a way
which is capable of expressing these correlations. For targets where
this is a good heuristic, a greater number of more precise flow sets
will result. For targets where it is not, a greater number of equally
imprecise flow sets may result. Object sensitivity supposes that pro-
gram values will tend to correlate with the allocation point of a
function’s receiving object (and the allocation point of its allocat-
ing object in turn, and so forth). The Cartesian product algorithm
supposes that program values for one argument to a function will
correlate with program values for other arguments to the same func-
tion. Polymorphic splitting supposes that more deeply nested func-
tion definitions will benefit from a greater degree of call history
than less deeply nested definitions. Each strategy for polyvariance
represents a gambit on the part of an analysis designer that targets
of the analysis will tend to behave in a certain way.

2.1 Toward Better Trade-offs

To further illustrate this point, consider a max function:

... %(let ([max (lambda (a b) (if (> a b) a b))1)
'(max 0 1)
z(max ngn "at"))

As before, a 1-call sensitive analysis will be precise enough to keep
the values 0 and "a" from merging; however, if max is n-expanded
k times, a k-call sensitive analysis will not be enough to keep the
approximation for a’s behavior from becoming {int, string} (in
the case of a type recovery, or {0, "a"} for a constant propagation).
In a sense this is not imprecise because neither of these are spuri-
ous values for a. Even from this context-agnostic perspective how-
ever, spurious inter-argument patterns are being implied between
the approximations for a and b. It appears that max could be in-
voked on both an integer and a string at the same time. To eliminate
this kind of imprecision, the Cartesian product algorithm builds
up whole tuples of arguments for each function, preserving these
inter-argument patterns and eliminating the possibility of calls like
(max "a" 1).For the function max, CPA has the same complexity
as k-CFA but yields significantly greater precision. For a different
function, one where all such inter-argument combinations are pos-
sible, CPA will exhaustively enumerate all combinations at great
expense, while k-CFA implies them at no additional cost. For dif-
ferent targets of analysis, or even different portions of the same
target of analysis, different styles of polyvariance can exhibit very
different efficacies in yielding degrees of precision (or efficiencies
at yielding the same degree of precision).

Strategy Allocator

Univariance a/ll\z)/cr (z,9) £T

Monovariance c?l?o/com (z,9) £

1-CFA G/,Z_TO/CICI.A(.%', (call, ,.)) & (z, call)

Call-Only Sensitivity
Call+Return Sensitivity

Polymorphic Splitting allocreas(z, (call, p,5,7)) = (z

alloceaony (z, (call, p,5,1)) 2 (x,17)

alloceas(x, (call, p,5,7)) = (z,7)

)

r

~

Instrumentation

None

None

None

Tracks a history of only call sites
Tracks a history of call and return points
Tracks a variable history of call sites

Object Sensitivity alloca(x, (call, p, 5, (50,0))) 2 (x,0) Tracks a history of per-object allocation points
Closure Sensitivity a/ﬁ;)/cclo(x, (call, p, 5, (60,0))) £ (z,0) Tracks a history of per-closure creation points

Zeroth-Argument Sensitivity a/ﬁ_o/cargu(x, (Caefaeo...),...)) = (z, T(A(aeo,<))) None

Store Sensitivity Eﬁ;)/css(x, (call,...,(i,ps,05%))) £ (z,call, p=,6x) Rebuilds per-state stores lost by store widening

Concrete Evaluation

alloc (z, (call, p,5,7))) 2 (z, |dom(5)|)

None

Figure 1. A selection of allocators.

Similar trade-offs can be described for other forms of polyvari-
ance and each further intersects with the well-known paradox of
flow analysis that greater precision can, in practice, lead to smaller
model sizes and faster runtimes [60]. While establishing better
guarantees of analysis efficiency does correlate inversely with guar-
antees of analysis precision in absolute terms, analyses with more
precise information for data flows will often have more precise con-
trol flows and explore a smaller overall model. Scaling polyvariant
flow analysis to larger programs written in dynamic languages like
Racket/Scheme, Python, or JavaScript, hinges on being able to reli-
ably make good trade-offs and exploit this paradox; otherwise, the
global use of polyvariance (for nearly all the varieties mentioned)
yields an exponential-time analysis in the worst case due to the
structure of environments in a higher-order setting [40, 56]. (The
exception among the techniques mentioned is the poly-k-CFA of
Jagannathan and Weeks [21] which effectively uses flat environ-
ments.)

Much work has gone into simply defining a correct semantics
for Python and JavaScript [18, 49, 54], with perhaps the most com-
pelling effort (at least, for the purposes of constructing a static anal-
ysis) being Guha et al.’s A\ ;s [17] and its successor, Politz et al.’s
Ass [47]. This approach reduces programs to a simple core lan-
guage consisting of fewer than 35 syntactic forms, reifying the hid-
den and implicit complexity of full JavaScript as explicit complex-
ity written in the core language. Desugaring is appealing for analy-
sis designers as it gives a simple and precise semantics to abstract;
however, it also presents one of the major obstacles to precise anal-
ysis as it adds a significant runtime environment and layers of in-
direction through it. Consider an example the authors of Ags use
to motivate the need for their carefully constructed semantics: []
+ {} yields the string "[object Object]". Strangely enough,
this behavior is correct as defined by the ECMAScript specifica-
tion for addition—a complex algorithm encompassing a number
of special cases which can interact in unexpected ways [13]. The
desugaring process for Ass replaces addition with a function call to
%PrimAdd from the runtime environment. %PrimAdd in-turn calls
%ToPrimitive on both its arguments before breaking into cases.
This means that for any uses of addition to return precise results, or
likely anything other than T, a k-call-sensitive analysis requires an
intractable & > 2.

One potential solution might be to use the flat environments
of poly-k-CFA or Might et al.’s mCFA [40], however in the case
of a language like Racket or Scheme, the frequent idiomatic use
of higher-order functions could make this impractical for getting
needed precision in the structure of environments. What seems to
be needed are increasingly nuanced, introspective, and adaptive
forms of polyvariance which better suit their targets and the proper-

ties we may wish to prove or discover for them. For example, a re-
cent development shows that the polyvariance of continuations can
be adapted in a way which guarantees perfect stack precision (i.e.,
perfect return flows [11, 12, 24, 58]) at no asymptotic complex-
ity overhead [16], a quite ideal trade-off between complexity and
precision obtained through a subtle refinement of the polyvariance
used. The direction of research in this area and the challenges of
precisely modeling dynamic higher-order programming languages
suggests an important development would be an easy way to ad-
just the polyvariance of a flow analysis (in theory and in practical
implementations) that is both always safe and fully general.

3. The Big Picture

We develop a unified approach to encoding all and only sound
forms of polyvariance, as tunings of an allocation function. We
show that the design space of polyvariance uniquely and exactly
circumscribes the design space of tunings for this function and
that no possible allocation strategy can lead to an unsound anal-
ysis. This leads us to the main idea of this paper: allocation char-
acterizes polyvariance. All classic flavors of polyvariance can be
easily recapitulated using our methodology and we are able to de-
rive novel variations by generalizing each. Furthermore, all possi-
ble variations on allocation yield a sound polyvariant analysis.

There are thus two directions to consider: that every allocation
strategy gives rise to a sound polyvariant analysis, and that every
sound polyvariant analysis can be implemented by an allocation
strategy. We employ the a posteriori soundness process of Might
and Manolios [38] to show that every allocator results in a sound
analysis. This means we may instrument our core flow analysis
arbitrarily to guide the allocator and so long as this extension to
our analysis only impacts the store through the narrow interface
of allocation, no instrumentation may lead to an unsound flow
analysis. Furthermore, every form of polyvariance is expressible
through this interface and we may express any allocation behavior
by permitting any instrumentation. All forms of polyvariance are
ways of merging and differentiating flow sets. In a store-passing-
style interpreter, this is determined by the addresses we allocate.

In Figure 1, we summarize a selection of the styles of polyvari-
ance we survey in Section 6. For each of these, classic styles of
polyvariance and novel variations, there is a pair of an allocation
function and an instrumentation that encodes it. For example, the
instrumentation for k-call sensitivity adds tracking of k-length call
histories to the analysis so that a call-sensitive allocator may pro-
duce addresses unique to both the syntactic variable being allocated
for and the current approximate calling context.

4. Abstracting Abstract Machines

This section reviews the AAM methodology we build upon, de-
veloping a concrete semantics for a simple language and abstract-
ing it to obtain a monovariant approximation. We follow this with
an explanation of the traditional strategy for proving soundness,
and of store widening—an essential approximation for obtaining a
tractable, polynomial-time analysis.

Static analysis by abstract interpretation proves properties of
a program by running code through an interpreter powered by
an abstract semantics that approximates the behavior of an ex-
act concrete semantics. This process is a general method for an-
alyzing programs and serves applications such as program veri-
fication, malware/vulnerability detection, and compiler optimiza-
tion, among others [8—10, 35]. Van Horn and Might’s approach of
abstracting abstract machines (AAM) uses abstract interpretation
of abstract machines for control-flow analysis (CFA) of functional
(higher-order) programming languages [25, 37, 57]. The AAM
methodology is flexible in allowing a high degree of control over
how program states are represented. AAM provides us with a gen-
eral method for automatically abstracting an arbitrary small-step
abstract-machine semantics to obtain an approximation in a variety
of styles. Importantly, one such style aims to focus all unbounded-
ness in a semantics on the machine’s address-space. This makes the
strategy used for the allocation of addresses crucial to the precision
and complexity of the analysis, and as we will see in Section 6, its
polyvariance.

4.1 A Concrete Operational Semantics

This section reviews the process of producing a formal operational
semantics for a simple language [46], specifically, the untyped A-
calculus in continuation-passing style (CPS). CPS constrains call
sites to tail position so functions may never return; instead, callers
must explicitly pass a continuation forward to be invoked on the
result [45]. This makes our semantics tail recursive (small-step) and
easier to abstract while entirely eliding the challenges of manually
managing a stack and its abstraction, a process previously discussed
in the context of AAM [24, 57]. Using an AAM that explicitly
models the stack in a precise manner (and allows for adjustable
allocation) has also been recently addressed [16].

CPS is a widely used transformation for compiler optimization
and program analysis [3]. If the transformation to CPS records
which lambdas correspond to continuations, a program may again,
along with any optimizations and analysis results, be precisely
reconstituted in direct-style form. This means the advantages of
CPS can be utilized without compromise or loss of information
[28]. The grammar structurally distinguishes between call-sites
call and atomic-expressions ae:

call € Call ::= (ae ae ...) | (halt)
lam € Lam == (A (z ...) call)
ae € AE = lam | z
x € Var is a set of program variables

Instead of specifically affixing each expression with a unique label,
we assume two identical expressions occurring separately in a
program are not equal. While a direct-style language with a variety
of continuations (e.g., argument continuations, let-continuations,
etc.), or extensions such as recursive-binding forms, conditionals,
mutation, or primitive operations, would add complexity to any
semantics, they do not affect the concepts we are exploring and
so are left out.

We define the evaluation of programs in this language using a
relation (—), over states of an abstract-machine, which determines
how the machine transitions from one state to another. States ()
range over control expression (a call site), binding environment,

and value store components:
¢ € X 2 Call x Env x Store
p € Env £ Var — Addr
o € Store & Addr — Value
a € Addr £ Var x N
Clo

Lam x Env

1>

v € Value
clo € Clo =
Environments (p) map variables in scope to an address for the
visible binding. Value stores (o) map these addresses to values (in
this case, closures); these may be thought of as a model of the heap.
Both these functions are partial and accumulate points as execution
progresses.

Evaluation of atomic expressions is handled by an auxiliary
function (A) which produces a value (clo) for an atomic expres-
sion in the context of a state (<). This is done by a lookup in the
environment and store for variable references (x), and by closure
creation for A-abstractions (lam). In a language containing syn-
tactic literals, these would be translated into equivalent semantic
values here.

A: AE x ¥ — Value
Az, (call, p, 0)) 2 o(p(x))
A(lam, (eall, p,) 2 (lam, p)

The transition relation (—y) : ¥ — X yields at most one
successor for a given predecessor in the state-space X. This is
defined:

(Caes aer ... aej),p,0) — (call’,p',0")
where (A (zo...x;) call'),pr) = A(aey, <)
Vi = .A(aei, §)

P = palzi = ail
o' = ola; — vi]
ai = (&5, |dom()])

Execution steps to the call-site body of the lambda invoked (as
given by the atomic-evaluation of ae y). This closure’s environment
(pa) is extended with a binding for each variable z; to a fresh
address a; (formally, an address is fresh if a; ¢ dom(o) A (a; =
ar = 1 = k)). A particular strategy for allocating a fresh
address is to pair the variable being allocated for with the current
number of points in the store. The store is extended with the atomic
evaluation of ae; for each of these addresses a;. A state becomes
stuck if (halt) is reached or if the program is malformed (e.g., a
free variable is encountered).

To fully evaluate a program callo using these transition rules,
we inject it into our state space using a helper Z : Call — X:

Z(call) £ (call, @, @)

We may now perform the standard lifting of (—) to a collecting
semantics defined over sets of states:

s€SE2P(X)

Our collecting relation (—) is a monotonic, total function that
gives a set including the trivially reachable state Z(callo) plus the
set of all states immediately succeeding those in its input.

s — s, where
s'={|s€sNns ¢ U{Z(callo)}

If the program cally terminates, iteration of (—) from L (i.e.,
the empty set @) does as well. That is, (—)™ (L) is a fixed point
containing cally’s full program trace for some n € N whenever
callp is a terminating program. No such n is guaranteed to exist in
the general case (when callp is a non-terminating program) as our
language (the untyped CPS A-calculus) is Turing-equivalent, our
semantics is fully precise, and the state-space we defined is infinite.

4.2 An Abstract Operational Semantics

Now that we have formalized program evaluation using our con-
crete semantics as iteration to a (possibly infinite) fixed point, we
are ready to design a computable approximation of this fixed point
(the exact program trace) using abstract interpretation. Previous
work has explored a wide variety of approaches to systematically
abstracting a semantics like these [25, 37, 57]. Broadly construed,
the nature of these changes is to simultaneously finitize the domains
of our machine while introducing non-determinism both into the
transition relation (multiple successor states may immediately fol-
low a predecessor state) and the store (multiple values may become
conflated at a single address). We use a finite address space to cut
the otherwise mutually recursive structure of values (closures) and
environments. (Without addresses and a value store, environments
map variables directly to closures and closures contain environ-
ments). A finite address space yields a finite state space overall and
ensures the computability of our analysis. Typographically, compo-
nents unique to this abstract abstract machine wear hats so we can
tell them apart without confusing essential underlying roles:

¢ e 32 Call x Env x Store

pAEE;l\vé Var — Addr
& € Store £ Addr — Value
a € Addr 2 Var

b € Value £ P(Clo)

clo € Clo 2 Lam x Env

Value stores are now total functions mapping abstract addresses to
a flow set (0) of zero or more abstract closures. This allows a range
of values to merge and inhabit a single abstract address, introducing
imprecision into our abstract semantics, but also allowing for a
finite state space and a guarantee of computability. To begin, we
use a monovariant address set Addr with a single address for each
syntactic variable. This choice (and its alternatives) is at the heart
of our present topic and will be returned to shortly.

Evaluation of atomic expressions is handled by an auxiliary
function (A) which produces a flow set (¢) for an atomic expres-
sion in the context of an abstract state (<). In the case of closure
creation, a singleton flow set is produced.

A AE x 5 — Value
A(z, (call, p, 6)) 2 5(p(x))
{(lam, p)}

The abstract transition relation (~;) C % x 3 yields any
number of successors for a given predecessor in the state-space .
As mentioned when introducing AAM, there are two fundamental
changes required using this approach. Because abstract addresses
can become bound to multiple closures in the store and atomic
evaluation produces a flow set containing zero or more closures,
one successor state results for each closure bound to the address
for aes. Also, due to the relationality of abstract stores, we can no

=
=
1>

A(lam, (call, p, &

longer use strong update when extending the store 6.

S

(Caes aer ... aej), p, &)~ (call’, p', ")
where ((A coxy) call’), py) € Aaey, <)
0s Z/l(aez, <)
p' = palri = ail
& =& Ufa; s b
G; = T;

A weak update is performed on the store instead which results in
the least upper bound of the existing store and each new binding.
Join on abstract stores distributes point-wise:

UG 2 Na. é(a)Us’(a)

Unless it is desirable, and provably safe to do so [39], we never
remove closures already seen. Instead, we strictly accumulate every
closure bound to each a (i.e., abstract closures which simulate
closures bound to addresses which @ simulates) over the lifetime
of the program. A flow set for an address a indicates a range of
values which over-approximates all possible concrete values that
can flow to any concrete address approximated by a. For example,
if a concrete machine binds (y, 345) — cloy and (y, 903) — cloa,
its monovariant approximation might bind y + {clol, cloz}
Precmon is lost for (y, 345) both because its value has been merged
with clos, and because the environments for clo; and clos in-turn
generalize over many possible addresses for their free variables (the
environment in clo; is less precise than that in clo1).

To approximately evaluate a program according to these abstract
semantics, we first define an abstract injection function, f, where
the store begins as a function, L, that maps every abstract address
to the empty set.

Z:Call»%
T(call) 2 (call, @, L)

We again lift (~-;) to obtain a collecting semantics (~~;) de-
fined over sets of states:

seS2P()
Our collecting relation (~»;) is a monotonic, total function that

gives a set including the trivially reachable finite-state Z(callo)
plus the set of all states immediately succeeding those in its input.

A ~ oAl
§ ~; 8, where
§ ={|¢€8N¢ YU {Z(callo)}

Because Addr (and thus) is now finite, we know the approximate
evaluation of even a non-terminating cally will terminate. That is,
for some n € N, the value (~»;)" (L) is guaranteed to be a fixed
point containing an approximation of cally’s full concrete program
trace [55].

4.2.1 Extension to Larger Languages

Setting up a semantics for real language features such as condi-
tionals, primitive operations, direct-style recursion, or exceptions,
is no more difficult, if more verbose. Supporting direct-style recur-
sion, for example, requires an explicit stack as continuations are
no longer baked into the source text by CPS conversion. Handling
other forms is often as straightforward as including an additional
transition rule for each. Consider inclusion of a set! form, en-

abling a direct modeling of effects:

call € Call ::= (set! x ae, ae)

We simply extend the definitions of (—) and (~-3) to include a
new transition rule. In our abstract semantics this might look like:

S

((set! x aey aey), p, &)~ (call’, p', &)

where ((\ (z0) call'), ps) € A(aes, <)
b= A(ae,, <)

p' = prlro > dolla > o]

&' =6 U[ao — {void}] U [ay — 1)

ao = o Ay =T

This assumes the Scheme-like behavior of having set!-forms re-

turn void and that void is permitted within flow sets.

b € Value 2 P(Clo + {void})

4.3 Soundness

An analysis is sound if the information it provides about a pro-
gram represents an accurate bound on the behavior of all possible
concrete executions. The kind of control-flow information the anal-
ysis of section 4.2 obtains is a conservative over-approximation of
program behavior. It places an upper bound on the propagation of
closures though a program.

To establish such a relationship between a concrete and abstract
semantics, we use Galois connections. A monotone Galois connec-
tion is a pair of monotonic functions connecting two lattices which
uniquely define one another in the following way:

as:S— S vs:5 =S

as(s) €8 < sCvs(3)

We use « to formalize a notion of abstraction, while v encodes con-
cretization. A family of functions a.comp map machine components
in the concrete semantics to their most precise representative in the
abstract semantics. A corresponding family of functions y¢omp map
entities in the abstract machine to a set of concrete entities such
that Id C v o «, placing a strict bound on the concrete executions
represented by an analysis result. For the monovariant analysis of
section 4.2, a suitable Galois connection may be defined:

as(s) £ {ax() | s € s}

as(call, p, o)

(1>

(call, agny(p), astore(d))
{(z, vadar(a)) | (z, a) € p}

|| [cadar (@) = {aci(clo)}]

,clo)eo

>

A Eny (p

)
)

O Store (U

—~
Q

[I>

acp(lam, p) = (lam, apn.(p))

[I>

OéAddr(‘Tv n) x

This abstraction function (a.s) uniquely defines its corresponding
concretization function (7s). Using this defined notion of simula-
tion, we may show that our abstract semantics approximates the
concrete semantics by proving that simulation is preserved across
transition:

as(s) T8N s — s = § §//\as(5') cé

O(n)
clog cloy clo;
ao 0 0 0
ay 0 0 1
O(n) :
a | 10 1

Figure 2. The value space of stores.

Diagrammatically this is:

—rs ’

§ — S

aslg aslg

3 s g
Both constructing analyses using Galois connections and proving
them sound using Galois connections has been extensively ex-
plored in the literature [10, 37, 50, 57]. Analyses of the style we
constructed in this section have previously been proven sound us-

ing the above method [36].

4.4 Store Widening

Various forms of widening and further approximations may be
layered on top of the naive analysis (~»;). One such approxima-
tion is store widening, which is necessary for our analysis to be
polynomial-time in the size of the program. To see why store
widening is so important, let us consider the complexity of an anal-
ysis using (~;). The height of the power-set lattice (S, U, N) is the
number of elements in 3 which is the product of call sites, environ-
ments, and stores. A standard worklist algorithm at most does work
proportional to the number of states it can discover [40]. Even in
the monovariant case, analysis run-time is thus in:

__ [Store|
[Call| X |[Env| A
= 2
Oo("n> x 2")

The number of syntactic points in an input program is in O(n). In
the monovariant case, environments map variables to themselves
and are isomorphic to the sets of free variables that may be deter-
mined for each syntactic point. The number of addresses produced
by our monovariant analysis is in O(n) as these are either syn-
tactic variables or expressions. The number of value stores may be
visualized as a table of possible mappings from every address to ev-
ery abstract closure—each may be included in a given store or not
as seen in Figure 2. The number of abstract closures is in O(n)
because lambdas uniquely determine a monovariant environment.
(The same is true of call sites and their monovariant environments
within states ¢.) This times the number of addresses gives O(n?)
possible additions to the value store.

The crux of the issue is that, in exploring a naive state-space
(where each state is specific to a whole store), we may explore
both sides of every diamond in the store lattice. All combinations
of possible bindings in a store may need to be explored, including
every alternate path up the store lattice. For example,/glong one
explored path we might extend an address a1 with clo; before
extending it with cloz, and along grlother path | we might add these
closures in the reverse order (i.e., 5102 before clo1). We might also

extend another address G2 with clo; either before or after either
of these cases, and so forth. This potential for exponential blow-

up is unavoidable without further widening or coarser structural
abstraction.

Global-store widening is an essential technique for combating
exponential blow up. This lifts the store alongside a set of reachable
states instead of nesting them inside states ¢. To formalize this,
we define new widened state spaces that pair a set of reachable
configurations (states sans stores) with a single, global value store
we maintain as the least upper bound of all stores we encounter
during analysis. Instead of accumulating whole stores, and thereby
all possible sequences of additions within such stores, the analysis
strictly accumulates new values in the store in the same way (~;)
accumulates reachable states in a collection §:

£cE2 R x Store
e R2P(C)
¢ C 2 Call x Env

[state-spaces]
[reachable configurations]
[configurations]

A widened transfer function (~~2) may then be defined that, like
(~3), is a monotonic, total function we may iterate to a fixed point.

1

(~2) : =

This may be defined in terms of (~;), as was (~~3), by transition-
ing each reachable configuration using the global store to yield a
new set of reachable configurations and a set of stores whose least
upper bound is the new global store:

(7,6) ~2 (#',6"), where

§ = {¢| (call, p) € # A (call, p, &) ~3 &'} U{Z(callo)}

7= {(call’, ') | (call’, p',6") € '}

a_// _ |_| (5',

(--6")€s’

In this definition, an underscore (wildcard) matches anything. The
height of the R lattice is linear (as environments are monovariant)
and the height of the store lattices are quadratic (as each global
store is strictly extended). Each extension of the store may require
O(n) transitions because at any given store, we must transition
every configuration to be sure to obtain any changes to the store

or otherwise reach a fixed point. A traditional worklist algorithm
for computing a fixed point is thus cubic:

|Store|

o]
o> x n?)
Using advanced bit-packing techniques [35], the best known algo-
rithm for global-store-widened 0-CFA is in O(n’)-

logn

5. Allocation as a Tunable Parameter

In the previous section, we systematically developed a global-
store-widened analysis of CPS A-calculus based on a concrete
abstract-machine semantics. It is a monovariant analysis which
means each syntactic variable or intermediate expression we track
during analysis receives exactly one flow set to over-approximate
all its possible values. A closely related term is context insensitive,
which means insensitive to any form of context and is a broader
term that may, for example, include analyses less precise than this
as well. In Section 4.2, the crucial propositional statement (among
those defining our abstract transition relation (~3)) which made
the analysis monovariant was this one:

A; = Tj

For each allocation, an address is produced which is unique only to
the syntactic variable being allocated for.

The goal of this section will be to produce a parametric seman-

tics which may be tuned by an allocator alloc that only varies this
aspect of the analysis, but may do so without restriction. Although
we will formalize this parametric semantics on its own, in the con-
text of our (~-;)-analysis the primary change looks like:

This would allow us to define monovariance as a tuning of this
function:

allOCncFA(Ia 6) é T

An equivalence relation on these addresses may be lifted from a
notion of equality for syntax, however we must either affix unique
labels to every program expression or assume that two identical
pieces of syntax found in the same program are syntactically un-
equal. For simplicity, we assume the latter.

The least polyvariant analysis has an allocator which produces
even fewer distinct addresses—in fact, only a single address T
which over-approximates all concrete addresses in any precise eval-
uation of the target:

alloc:(z,) 2 T

We might call this the univariant allocation scheme because it
produces only a single address and smashes all program values
together. Even an analysis as imprecise as this could have a use.
For example, univariant allocation would make for an exceptionally
cheap analysis powering dead-code elimination.

Instead of defining a set of abstract addresses explicitly as done
in Section 4.2, we can now allow this set to be defined implicitly
by the image or codomain of the allocation function. This does
mean that for an analysis to be computable, the allocator must
only produce a finite number of abstract addresses. An allocator
which does not produce a finite number of addresses, essentially an
infinitely polyvariant allocation strategy, may be used to tune our
analysis to concrete evaluation:

alloc, (z, (call, 3,5)) 2 (z,|dom(5)|)

This is also an example of a form of polyvariance which must
introspect on the current program state in order to produce an
address. Without looking at the current store (or using another
method), a concrete allocator is unable to ensure it always produces
a fresh address (and thus avoids all merging in the store). Being
able to represent concrete evaluation as a choice of allocator is
also useful because it allows us to write a precise interpreter and
a static analysis simultaneously as a single body of code. Along
with promoting code reuse and concision, this means testing either
one also aids the robustness and stability of the other [23].

Now we have seen three simple points within the design space
of allocation strategies and polyvariance. Univariant allocation and
concrete allocation frame this design space and represent two top-
most and bottom-most strategies; monovariance lies between. Two
important questions are left to be answered about the correspon-
dence between polyvariance and allocation, however. First, we
must consider whether there is any tuning of allocation which is
unsafe (i.e., leads to an unsound analysis) or which is not poly-
variant. Second, we must consider whether there are polyvariant
strategies which may not be implemented as an allocator.

5.1 A Posteriori Soundness

The usual process for proving the soundness of an abstract inter-
pretation is a priori in the sense that it may be performed entirely
before an analysis is executed. This is the kind of soundness theo-
rem we described in Section 4.3. By contrast, Might and Mano-
lios [38] describes an a posteriori soundness process where the
abstraction map cannot be fully constructed until after analysis.

This approach factors each « to separate the abstraction of ad-
dresses aaddr, producing a family of parametric maps (3 such that
B(caddr) = a. A non-deterministic abstract interpretation is then
constructed which simultaneously attempts all possible allocation
strategies. (This could also be an arbitrary allocation function with-
out loss of generality.) After the analysis is performed, regardless
of the allocation strategy taken, a consistent abstraction map may
be constructed a posteriori which justifies each choice of abstract
address whatever it may have been. It is then always possible to
plug this Galois connection for addresses into the parametric Ga-
lois connection defined by 3 to obtain a complete connection and
proof of soundness.

What is special about the allocation of abstract addresses which
could make even a random number generator a sound choice of
allocator? Clearly we couldn’t define the operation of most other
components of our abstract machine randomly and still guaran-
tee a sound analysis. Intuitively, it is because in a concrete eval-
uation of any program, we may select a fresh and unique address
for every new allocation. (In fact, we might justify a garbage col-
lection scheme as safe by showing that when an address becomes
unreachable it may be reclaimed and the semantics are guaranteed
to remain equivalent to allocating a fresh address.) Allocating a se-
quence of fresh, unique addresses which are never duplicates of
previous concrete addresses is thus a central characteristic of what
it means to be a concrete allocator. Whatever the behavior of ab-
stract address allocation then, no inconsistency may arise in the
aaddr it induces because of just this property. No concrete address
may become abstracted to two different abstract addresses along
the sound abstract program trace because no concrete address is
allocated more than once.

To illustrate this point, consider Figure 3. It shows a program
callp being injected into a starting state, o, and evaluated step
by step. A static analysis performed by iterating an abstract tran-
sition relation will produce a transition graph, but for the analysis
to be sound, the concrete program trace must abstract to some path
through this graph. Such a path is illustrated below, spurious transi-
tions dangling from it. Dotted lines are used to illustrate “abstracts
to” relationships for states and addresses (points in as; and @ addr)-
If a concrete machine and its abstract machine are simulated in
lock-step, each abstract transition which allocates an address has
two choices: either it can allocate an address a; it has allocated be-
fore, or it may allocate a new address a;. In both cases, it is decid-
ing what the corresponding (necessarily fresh) concrete address a;
must abstract to in 444, In this way, a bisimulation incrementally
builds up an abstraction map for addresses, incrementally adding
each point [a; — d;], one at a time.

In the original presentation of the a posteriori soundness the-
orem, Might and Manolios state an assumption which says that
each new abstraction map caqqrla; +— G;] must be consistent
with whatever partial abstraction map cvaqqr Was built up previ-
ously. No further intuitions were given for this assumption, though
it is actually the central property which allows the entire a pos-
teriori soundness process to work. For the abstraction induced by
the pairing of a concrete allocator and abstract allocator to be in-
consistent, the same concrete address would need to be abstracted
to two different abstract addresses. Because a concrete allocator
must, by definition, produce a fresh address for every invocation, no
such inconsistency is possible, regardless of the abstract allocator
chosen. Each «aqar[a; — @;] must be consistent with cvaqar be-
cause the concrete address, a;, cannot already be present in & aqdr-
This makes abstract allocation a tunable analysis parameter with
the unique property that every possible tuning results in a sound
analysis.

We may now review the a posteriori soundness theorem in the
context of AAM.

callp

<o S1 <2 <3 S4 G5+
ao ai az as Q4
oL ~ - ~
R S R

N S a7 az Y N

<o S1 G2 <3 S4 S5

N N N N N N

Figure 3. All strategies for allocation induce a consistent Galois
connection for addresses.

Theorem 5.1 (A posteriori soundness). If (s, a) is a concrete exe-
cution where s is a sequence of states and a = {(ag, a1,az2,...) is
the sequence of concrete addresses allocated, and if some (~3) is
a dependent simulation [38] of (—) under (3 (dependent only on
finding an abstraction map for addresses), and if 5 is a closed ab-
stract transition graph over states, then there must exist an abstrac-
tion map for addresses, aaqar, Such that 5 is a sound simulation of
(s, a) under the abstraction map B(a addr)-

Proof. (Summary of [38].) We proceed by performing an a posteri-
ori construction of & 444, This is done by building up a simulating
sequence of abstract states ¢ = (o, 1, $2, . . .), their respective ab-
stract addresses a = (ao, a1, @z, . - .), and a sequence of partial ad-
dress abstraction maps & = (o, a1, . . .). Let NV be the length of ¢
and the initial abstraction map o be L. At each step a next abstract
address a; (or several for multiple-argument lambdas) and abstract
state ¢; may be chosen simultaneously and non-deterministically
from a non-empty set of candidate transitions guaranteed to ex-
ist by the dependent simulation condition [38]. Each new point
[a; — @;] is accumulated into an updated intermediate abstrac-
tion map «; = a;—1[a; — a;] which inductively builds up aaqar
in its limit:
Qadar = lim o
i—N

Then < in § is a simulation of (g, a) with respect to B(@adar). O

5.2 Introspection and Instrumentation

Now we may consider whether or not any strategy for polyvariance
can be implemented as a tuning of the allocation function. What
about more precise forms of call sensitivity, 1-CFA or 2-CFA? A 1-
call sensitive allocator can be defined by introspecting on the state
being transitioned from and incorporating the most recent call site
into the address being produced:

m1CFA(x, (call,_,) & (xi, call)

This makes addresses (and their flow sets) unique to both the
variable x and the call site which preceded the binding. If we were
to attempt an implementation of a more precise variant of call
sensitivity however, like 2-CFA, we run into a problem because
our analysis simply does not include the information necessary to
guide this style of polyvariance. The current abstract state contains
the most recent call site passed through, but it does not include the
second most recent call site.

To permit a tuning for alloc,cr, we could instrument our core
flow analysis with a new fourth component of machine states that
specifically tracks the second most recent call site. If we were
to extend the analysis with such information, a 2-call sensitive
allocator could be defined:

C%QCFA(m, (call, _, _, call’)) 2 (2, call, call’)

5062
%GVarxi—)M

(%3) € £ x Call x Env x Store — P(I)

Figure 4. Parameters to these semantics.

5eS2PX) [analysis results]
5 EZ2Rx % [widened results]
FeER2 P(C) [reachable configs]
ceC2Callx Enox I [configurations]
e $ 2 Call x Env x Store x I [states]

pE Env 2 Var — Addr [environments]

—~

& € Store & Addr — Value [value stores]

i € 1 is defined by the parameter (¥3) [inst. data]

& € Addr is defined by the parameter alloc [addresses]

& € Value 2 73(6%) [flow sets]
clo € Clo 2 Lam x Env [closures]

Figure 5. Abstract domains for our parametric semantics.

In this case, call’ is a new component of machine states that
represents the second most recent call site. Naturally, (~;) and
7 would need to be extended to include this information.

Crucially, due to the a posteriori soundness theorem, we may
add whatever instrumentation is needed to guide the behavior of
an allocator. An analysis designer may wish to extend the core flow
analysis in a way which is sound with respect to a dynamic analysis
or instrumentation of the concrete semantics; however, even if the
analysis is extended with unsound information about a program,
this information can still be used to guide allocation behavior with-
out any possibility of it causing unsoundness within the core flow
analysis (e.g., within the store). This means we may leave such in-
strumentation open as another parameter to a semantics and place
no restrictions on its behavior. Because we lose no expressivity in
this instrumentation, all conceivable allocation functions can be ex-
pressed as well. This means all strategies for merging and differen-
tiation of abstract addresses (and their flow sets) are possible, and
thus all forms of polyvariance may be expressed as a combination
of some allocator and some instrumentation.

5.3 A Parametric Semantics

In this section, we present a parametric semantics which may be
tuned by both an allocation function and an instrumentation (an
arbitrary extension of the analysis). Typographically, we switch
exclusively to using tildes to keep this machine distinct from the
machine of Section 4.

Our parametric semantics is encoded in a function:

start state instrumentation

~~

CFA: % x(ixCale%xm—)P(D)
allocator analysis
—_— —_—N—

x (Var x & — Addr) — (§ — 8)

CFA (G, +*, alloc) £ (~7)

CFAq (S0, %%, alloc) £ (~2)

(»3): 85— 8
~ ~ ~/
§ ~, S, where

§ =1{& | (call,p,5,7) € 3 A (call, p,5,7) ~; &Y U{%H}

¢
.[i]z
1
[1:

(7,&) ~z (#,5"), where
§ = {¢'| (call, p,7) € F A (call, p,5,7) ~: U {S}
7 = {(call',§',7) | (call', ', 5",7) € 5}
6_// — 6_/

(o5 ,)ER!

A : AE x ¥ — Value
Az, (call, p, 5, 1)
A(lam, (call, p, &, 1)

I

(Caes aey ... ae;),p,5,0) ~z (call’,p', 6", 7)
where (A (zo...x;) call'),py) € A(aey, <)

177; = A(aei, f)

~/

= palwi — ail

hs)

~1/

o :&U[fli'—)f)i}

a; = (ﬁi()/c(xlﬁ)

¢ (call', p.&, Z/) (N.B. this syntactic sugar.)

Figure 6. Transition rules for our parametric semantics.

CFA is a function of three arguments: a starting state, o, which
specifies the program to interpret and its initial 7o, an instrumen-
tation, (<), which may be used to extend the core analysis ar-
bitrarily, and an allocator, alloc. Given three such parameters,

CFA(&, 5, a/ﬁBE) yields a monotonic analysis function which
may be iterated to a fixed point. If the image of alloc (the set

Inst

Addr it can produce) and the image of (~3) (the set of sets of I it
can produce) are finite sets, then there must exist an n € N such

that (CFA(S,~%, alloc))™(L) is a fixed point encoding a sound
analysis of ¢y using the instrumentation and style of polyvariance
specified.

Figure 4 shows the signatures of the th/rie/parameters to CFA.

The allocator defines a set of addresses Addr for the analysis to

use. The instrumentation relation defines a set of instrumentation
data I to extend the core flow analysis and enable a greater vari-
ety of allocators. An instrumentation is a function which, taking
the underlying analysis transition into account, determines the in-
strumentation data to be included in successor states. Although this
may not constrain the core flow analysis, to emphasize that it can
encode an entire analysis of its own, we use the following syntactic
sugar:
S (call,p',6",7) = T € (&) call', ', 5")

Figure 5 shows the remaining domains that the machine oper-
ates over. These are similar to the domains in Section 4 except that
states and configurations contain instrumentation data () and ad-
dresses are specified implicitly by the allocator chosen.

Figure 6 defines the transition relation (~7) yielded by CFA
when supplied with all its arguments, as well as a store-widened
version (~:) yielded by CFAy. There are three meaningful
changes from the semantics of Section 4, one for each parame-
ter. First, the starting state Jp is as provided and not produced by an
injection function (this allows the user to control the initial instru-
mentation data along with the program to be analyzed). Second,

addresses a; are constrained only by the allocator alloc provided.

Inst

Third, the instrumentation function (~>) constrains the instrumen-
tation data i’ based on all other components of a transition.

6. Allocation Characterizes Polyvariance

This section explores the design space opened up by a semantics
parameterized over both an instrumentation and an abstract alloca-
tor, showing how it encompasses a variety of previously published
polyvariant techniques, novel techniques, and variations on these.

6.1 Call Sensitivity (k-CFA)

Call-sensitive instrumentation tracks a history of up to k call sites
for use in differentiating addresses.

(call, _, _, 1) mm”(k) (5, -, -, takeg(call:7))

The function takey, returns the front at-most k£ elements of its input
as a new list. For this instrumentation to distinguish between two
syntactically equivalent call sites located in different parts of a
program, we assume two pieces of syntax are only equal when
they are the same piece of syntax from the same part of the same
program. This allows us to safely lift an equivalence relation on
syntax to an equivalence relation for addresses.

Using (mmll(k)), we may tune our analysis to implement k-CFA
using an allocator which incorporates these k-length call histories
in the addresses it produces.

alloce(z, (call, p, &, 7)) £ (,1)

The parametric semantics of Section 5.3 can be tuned to recapitu-
late the k-call sensitive style of polyvariance for a program callo
using the parameterization:

—

CFA((callo, D, L, €), > caury, allocen)
6.1.1 Ambiguity in k-CFA

The original formulation of k-CFA was described as tracking a
history of the last k call sites execution passed through, however,
it was applied to a CPS intermediate representation. After a CPS
transformation, every return point has been encoded as a call site.
This means, as implemented, k-CFA was actually tracking a history
of the first k call sites or return points. A call sensitivity which only
remembers call sites and not return points is a somewhat different
form of polyvariance from what Shivers originally formalized [52].

Using a direct-style language, this difference would be easy to
formalize as a tuning of our parametric framework because the
difference between calls and returns is syntactically evident. Using
CPS, we must assume either partitioned CPS with both lambda
and cont forms which behave identically but are kept separate,
or we must assume this distinction is being encoded another way.
To demonstrate a tuning for call-only sensitivity, we assume a
predicate Ret : Call — Bool which returns true if and only
if the call site given was originally a return point (before CPS
conversion). We are only required to change the behavior of our
instrumentation:

I -, taker(call:7)) —Ret(call
(Call7 - - [/) 2 callonly (k) { Eﬂ o Z) k()) Ret((ca”))

We can then instantiate our framework to a 2-call-only sensitive
analysis as follows:

CFA((callo, @, L, €))(* ationy) (allocea)

We can also produce tunings which represent an analysis that re-
members only return points or an analysis sensitive to the top k
stack frames. This means there are at least four reasonable inter-
pretations of k-CFA which resolve the ambiguity between its orig-
inal description and its original formalization. Each of these four
styles of polyvariance are subtly different and may yield a different
analysis result. Furthermore, none of these four styles of polyvari-
ance strictly dominates the precision of any other. For each we can
find examples where that specific interpretation of k-CFA produces
the best result. For example, the following snippet of Racket code
(before CPS conversion) differentiates call+return sensitivity and
call-only sensitivity.

(let ([id (lambda (x) x)]
[f (lambda (g) (let ([v (g)1) v))1)
(f (lambda () (id #f)))
(f (lambda () (id #t))))

The last call before binding v a first time is (id #£), but the second
time itis (id #t). This means a 1-call-only sensitive analysis will
keep both addresses bound to v distinct. The last call or return
before binding v however, is the identity function’s return point x
in both cases. This means a 1-call+return style of polyvariance will
merge both #t and #f at a single address for v.

Different styles of polyvariance represent different heuristics for
the trade-off between precision and complexity and may strike a
poor balance on one program while striking an excellent balance
on another. Having a safe parametric framework which can so eas-
ily instantiate any conceivable heuristic could prove an important
step in understanding which styles of polyvariance work best in
what situations and thereby inform us how to better adapt the poly-
variance used to suite a particular target of analysis.

6.1.2 Variable Call Sensitivity

Wright and Jagannathan’s polymorphic splitting is a form of adap-
tive call sensitivity inspired by let-polymorphism where the de-
gree of polyvariance can vary between functions [60]. The number
of let-form binding expressions (right-hand sides) a lambda was
originally defined within (in the case of our language, before CPS
conversion) forms a simple heuristic for its call sensitivity when
invoked. To implement k-call sensitivity with a per-function k, we
assume a parameter function L : Call — N that takes the body of a
lambda and gives back a k for its 1et-depth (or any other heuristic
for varying the maximum length call history).

(call, -, _, ©) 3 peansiry (call’, -, _, take(r(caury)(call:7))

This call history is then used for allocating addresses.

= (,2)

Because all parameterizations of our semantics are sound, all pos-
sible heuristics L are too. No tuning of L can produce an infinite
k, only arbitrarily large k. In the case of polymorphic-splitting, be-
cause no program can contain an infinite nesting of let-forms, ev-
ery program has a let-polymorphic tuning of L.

This instrumentation and allocator generalize the behavior of
polymorphic splitting and could be further generalized by adding a
function like Ret from the previous subsection for selecting which
call sites to include in the history to begin with. In this way, call
sensitivity can be seen as a wide design space itself within the
broader design space of polyvariant allocation strategies.

a/ﬁo/c]_caus(x, (Ca’lla ﬁ? &a Z))

6.2 Object Sensitivity

Smaragdakis et al. [53] distinguishes multiple variants of object
sensitivity, first described by Milanova et al. [41]. This style of
context sensitivity is entirely different from call sensitivity and uses
a history of the allocation points for objects to guide polyvariance.

We temporarily extend our language with a vector-form to
represent simple objects and present a faithful tuning for object
sensitivity.

ae € AE ::=

vec € Vec :

lam | x | vec
= (vectorx ...)

We define abstract-object values permitted within flow sets (tuples
of pointers):

& € Value 2 P(Clo + Oby)

obj € Obj 2 Addr
And give vector syntax an interpretation in the atomic-expression
evaluator:

Az, (call, p, &,
A(lam, (call, p, &,

=

) =3a(p(z))
) = {(lam, p)}
2)

St}

A((vector zo ... z;), (call, p, &,

{(p(z0), ... p(x;))}

As the fields of our objects are effectively each vector’s in-
dices, and because these are strictly kept distinct instead of being
merged, we can call this representation for vectors field sensitive
[34]. Flow sets for objects look like { (a1, a2, a3), . . .} and not like
{@1, a2, as, .. .}, preserving the relationship between keys and val-
ues. Allowing these lists of addresses within flow sets is not a new
source of unboundedness in the machine because the longest pos-
sible list is the length of the longest vector form in the finite pro-
gram text.

In Smaragdakis’ framework, k-full-object sensitivity tracks the
allocation point of each object, the allocation point for the object
which created it, and so forth. In our extended CPS language, the
zeroth parameter to a function is its receiving object.

O € Call*
50 € Addr x Obj — P(Call*)

Each state is extended with a current allocation history, O, and
an object-sensitivities store, o, which maps an abstract object at
an address to a set of possible allocation histories for that object.
Each transition extends 6o with a new allocation history (produced
by extending the current allocation history O with a new allocation
point, the current call site) for each ae; that constructs a new object.
Existing objects bound to a variable (some y;) have their histories

propagated along with the objects. Each transition then yields a

successor for each possible allocation history associated with a

receiving object. If global-store widening is used for an analysis,

a similar form of widening might be used for object-sensitivities
stores.

¢

aej) Py = (UO O)) 0b7(k (Call/’ ﬁlv - (&/070~l))

x;) call'),) € Alaey,<)

(;Z)}i S A(aeia é’)

0" €665 (o

5o =60 U |_| (7 (), ofbvjz) — {taker(Caey ...

ae;=(vector ...)

u| 1A'«

ae; =Y,

(Caey ...
where ((\ (zo..

), 0bj)
ae;):0)}]

), 0bj;) = G0 (A(y:), 0bj ;)]

An allocator for this style of polyvariance then pairs each vari-
able with the current allocation history (ignoring the sensitivities
store which only needs to be used internally).

G/ZTO/Cobj(% [P (5076))) £ ("E»O)

Smaragdakis, et al. [53] and Lhotdk and Hendren [31] find ob-
ject sensitivity to be particularly efficient for object-oriented lan-
guages in their empirical investigations using the Java DaCapo
and SpecJVM benchmarks. Kastrinis and Smaragdakis [27] present
combinations of object and call sensitivity. Combinations of styles
of polyvariance can also be accomplished by a tuning of instru-
mentation and allocation. Section 6.5 presents a general method
for combining multiple styles of polyvariance.

6.2.1 Closure Sensitivity

Inspired by object sensitivity, we formalize a novel analogue for
functional languages called closure sensitivity. In this style of poly-
variance, we view closures as the fundamental objects of higher-
order languages (in the terminology of object-oriented languages,
they are their own receivers) and associate them with closure-
creation histories directly. No changes need to be made to our CPS
language and its semantics.

3

0)) Haow (call’, §, - (66,0"))
x;) call'), py) € Alaey,)

Elvoi S fl(aei,i)
.. ae;):0)}]

(Caey ... ae;), p, -, (60,
where ((A\ (zo ..

o—UOU|_|[

ae;=(lambda ...)

I_I|_|[), clos)

> {ta’zifwef - ae;):0)} dey = omtn .
Go(p(ys), (X (xo...) call),pr)) aey =ys

Instead of vectors, closures created at the current call site become
bound to the current allocation history (extended with the current
call site) across each transition. Instead of the zeroth argument
being used to determine successor-state allocation history, the value
in call position is used.

clo1) — {taker(Caey .

= Go(p(y:), clos)]

allocas(z, (- - (50,0))) 2 (z,0)

6.3 Argument Sensitivity

Agesen [1] introduces a Cartesian product algorithm (CPA) as an
enhancement to a type recovery algorithm (which can be viewed as

~

an abstract interpretation where dynamic program types are used
as abstract values). We will consider the source of imprecision that
the original formulation attempts to address, generalize its solution
as a form of polyvariance in our approach, and discuss CPA’s
complexity and precision relative to call and object sensitivity.

The basic algorithm, that CPA extends, assigns a flow set of
dynamic types for each variable in the program, it establishes con-
straints based on the program text, and it propagates values until all
these constraints have been met. The primary method for overcom-
ing this merging, is introduced as the p-level expansion algorithm
of Oxhgj et al. [43]—a polyvariant type-inference algorithm and
analogue to the call-string histories of Harrison and then Shivers,
where the use of p parallels that of k in k-CFA. This is shown to be
insufficient however, as the authors of CPA give a case of merging
which cannot be overcome by any value of p. Besson [5] further
illustrates this point in the context of Java, claiming “CPA beats
0o-CFA”.

The original motivating example for CPA was a polymorphic
max function:

(let ([max (lambda (a b) (if (> a b) a b))])
)

Here, the only constraint for an input to max is that it support
comparison, so a call (max “a” “at”) makes as much sense as
a call (max 2 5). However, if both these calls are made with a
sufficient amount of obfuscating call (or object) history behind
them, merging will cause the flow sets for both a and b to each
include both string and int (i.e., abstract values for those types).
This is imprecise as it implies that a call (max 2 “at”) is possible,
even when it is not. The problem then, can be summarized as
the existence of spurious inter-argument patterns which become
inevitable when the flow sets for different syntactic arguments are
entirely distinct.

The solution that CPA proposes is to replace flow sets of per-
argument types, with flow sets of per-function tuples of types. In
such an analysis, the function max itself would be typed
{(int, int), (string,string) ...} preserving inter-argument
patterns and eliminating spurious calls where the types don’t match.

In essence, this change makes flow sets for each argument
specific to the entire tuple of types received in a call. This suggests
that, although no amount of call history will ensure the preservation
of inter-argument correlations, a form of polyvariance which makes
addresses specific to a tuple of abstract values for arguments can.

We must be careful here in extending this idea to an allocator
for our CPS language. If a tuple of closures is included inside ad-
dresses, the mutual recursion of addresses, closures, and environ-
ments makes the analysis unbounded. Instead, we assume a helper
function 7" which further abstracts abstract values so they cannot
contain addresses. For an approach especially similar to CPA itself,
we might define 7 so it yields types. For a functional language,
we can define 7 so that it strips environments out of closures and
leaves just a set of syntactic lambdas. For example:

T(d) £ {lam | (lam, p) € d}

In a sense, syntactic lambdas are at least as specific as a type (their
type signature, whatever type system is used) whether or not that
type is known a priori by an analysis [14].

With this, we may define an argument sensitive style of poly-
variance, like CPA, as an abstract allocator.

S

EZZ_O/CCPA(Q:7 (Caey aeq ... aej), -, -,)
= (ZE, (T(.A(GE(),f)), L) T(A(aej7€))))
We can also observe how easy it would be to construct less pre-
cise variations of this allocator by including only some arguments

within addresses. For example, including only the first argument
might yield enough precision in many cases:
¢

aej)v - *))

= (2, T(A(aco, <))

We could even vary the arguments an analysis is sensitive to on
a per-function basis like we did for polymorphic splitting in Sec-
tion 6.1.2.

Like call sensitivity and object sensitivity, CPA can be of expo-
nential complexity in the size of the program and is exceedingly
impractical for use on sufficiently complex input programs. CPA is
also, however, an excellent illustration of the principal that, in prac-
tice, more precision can also lead to smaller model sizes and faster
analysis times. Where CPA improves precision, it is also fastest,
and where CPA is unnecessary and delivers no improvement over
k-CFA, it is enormously inefficient. For a function like max, one
where the types of the arguments should match, CPA accumulates
only a single value for each type that can flow to the function.
For a function where all combinations of arguments are possible,
CPA requires each combination to be enumerated explicitly. k-CFA
implies all inter-argument combinations for equal precision at far
greater efficiency. This would seem to support an effort to discover
more adaptive variations on CPA.

gﬁo/cargo(L (Caef aeq ...

6.4 Extreme-Precision Allocators

We can even further generalize the central idea of CPA to consider
forms of polyvariance which preserves inter-address correlations in
the store. What about an extreme case for the precision of an allo-
cator where an analysis allocates addresses specific to entire stores
(or portions of stores, or specific addresses in the store). As it turns
out, we can even recover all the precision lost through structurally
store widening as a form of store-sensitive polyvariance.

We assume the underlying allocator (in a store-sensitive setting)

is alloc and its instrumentation is ~5. Using these, we may produce
an instrumentation for recovering store sensitivity within a struc-
turally store widened parametric semantics by rebuilding the state-
specific environments and stores lost due to store widening.

S

((aef aeo ... ae;), p, 0, (Zaﬁih&z))
B il = (call's B, &, (T, 7z, 5%))
where (A (zo...x;) call'),pr) € A(aey, <)
Uy = A(aei, §~)

P = pali — @i
&% = &x Ula; —)
C~Li = gﬁ;;:(a:l,f)

Inst ~/ ~l)

(Caes aeo ... aej), p, &, 0) <5 (call’, p', 5,0

We then use an allocator which embeds these recovered exact
environments and stores to differentiate addresses.
allocs(z, (call, p, &, (i, px, %)) 2 (z, cdll, px, 6x)

Using a similar instrumentation which rebuilds exact environments,
we can also recover the full environment sensitivity lost through
closure conversion, or the use of mCFA or poly-k-CFA.

alloce(z, (call, p, &, (7, px))) 2 (z, call, px)

In this way we can observe that some important forms of coarser
structural abstraction (store widening and the use of flat environ-
ments) are encompassed by our design space for polyvariance.

6.5 Combining Forms of Polyvariance

For two forms of polyvariance, we may combine them by essen-
tially taking the product of their instrumentations and the product
of their allocators. Consider two forms of polyvariance character-

Inst

ized by alloco paired with (~~¢) and alloc, paired with (¥31), re-
spectively.
We can produce a new instrumentation which compiles the

Inst

information added by both (+%o) and (~%1):
(call, ﬁ: 5—7 (20721)) ux (Call/7 ﬁl, a”» (267’[/1))
where (call, p, &, io) 3o (call’, §, &', 1))

(call, p, G, 0r) =1 (call’, §, &', 1)

Likewise, we can produce a new allocator which returns an
address specific to both addresses returned by alloco and allocy:

alloc, (z, (call, p, &, (f0,1))) £

(alloco(z, (call, p, &, iv)), alloci (x, (call, §, &, 11)))

7. Conclusion

We have defined the polyvariance of abstract abstract machines,
consistent with previous uses of the term, to mean the degree to
which program values at runtime are differentiated into some num-
ber of distinct static approximations of their dynamic behavior. In
a store-passing abstract interpreter, this differentiation is uniquely
and entirely determined by the strategy used for the allocation of
addresses.

To show both that all strategies for sound polyvariant analysis
may be implemented as an allocator and that all allocators yield a
sound polyvariant analysis, we employ the a posteriori soundness
process of Might and Manolios and permit arbitrary instrumenta-
tion to guide the behavior of allocation within the core flow analy-
sis. Our approach both allows us to easily recapitulate classic styles
of polyvariance and to develop new variations and combinations of
these. We are able to distinguish multiple flavors of call sensitivity,
resolving an ambiguity in the original formulation of k-CFA, and
encompass fundamental variations on the structure of an analysis.

Acknowledgments. The authors would like to thank the anony-
mous ICFP reviewers for their thorough and insightful feedback.

This material is partially based on research sponsored by
DARPA under agreements number AFRL FA8750-15-2-0092 and
FA8750-12-2-0106 and by NSF under CAREER grant 1350344.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References

[1] O. Agesen. The cartesian product algorithm. In Proceedings of the
European Conference on Object-Oriented Programming, page 226,
1995.

[2] T. Amtoft and F. Turbak. Faithful translations between polyvariant
flows and polymorphic types. In Programming Languages and Sys-
tems, pages 26—40. Springer, 2000.

[3] A. W. Appel. Compiling with Continuations. Cambridge University
Press, February 2007. ISBN 052103311X.

[4] A. Banerjee. A modular, polyvariant and type-based closure analysis.
In ACM SIGPLAN Notices, volume 32, pages 1-10. ACM, 1997.

[5] F. Besson. CPA beats co-CFA. In Proceedings of the 11th In-

ternational Workshop on Formal Techniques for Java-like Programs,
page 7. ACM, 20009.

[6] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. In ACM SIGPLAN Notices, vol-
ume 44, pages 243-262. ACM, 2009.

[7] P. Cousot. Types as abstract interpretations. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 316-331. ACM, 1997.

P. Cousot and R. Cousot. Static determination of dynamic properties
of programs. In Proceedings of the Second International Symposium
on Programming, pages 106—130. Paris, France, 1976.

[8

—

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints. In Proceedings of the Symposium on Principles of
Programming Languages, pages 238-252, Los Angeles, CA, 1977.
ACM Press, New York.

[10] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Proceedings of the Symposium on Principles of Pro-
gramming Languages, pages 269-282, San Antonio, TX, 1979. ACM
Press, New York.

[11] C. Earl, M. Might, and D. Van Horn. Pushdown control-flow analysis
of higher-order programs: Precise, polyvariant and polynomial-time.
In Scheme Workshop, August 2010.

[12] C.Earl,I. Sergey, M. Might, and D. Van Horn. Introspective pushdown
analysis of higher-order programs. In International Conference on
Functional Programming, pages 177-188, September 2012.

[13] ECMA. ECMA-262 (ECMAScript Specification). ECMA, 5.1 edition,
June 2011.

[14] T. Gilray and M. Might. A survey of polyvariance in abstract inter-
pretations. In Proceedings of the Symposium on Trends in Functional
Programming, May 2013.

[15] T. Gilray and M. Might. A unified approach to polyvariance in
abstract interpretations. In Proceedings of the Workshop on Scheme
and Functional Programming, November 2013.

[16] T. Gilray, S. Lyde, M. D. Adams, M. Might, and D. V. Horn. Pushdown
control-flow analysis for free. Proceedings of the Symposium on the
Principals of Programming Languages (POPL), January 2016.

[17] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of javascript.
In Proceedings of the European Conference on Object-oriented Pro-
gramming, pages 126—150, Berlin, Heidelberg, 2010.

[18] D. Guth. A formal semantics of python 3.3. Master’s thesis, University
of Illinois at Urbana-Champaign, July 2013.

[19] W. L. Harrison. The interprocedural analysis and automatic paral-
lelization of Scheme programs. Lisp and Symbolic Computation,
1989.

[20] S. Holdermans and J. Hage. Polyvariant flow analysis with higher-
ranked polymorphic types and higher-order effect operators. In ACM
Sigplan Notices, volume 45, pages 63-74. ACM, 2010.

[21] S. Jagannathan and S. Weeks. A unified treatment of flow analysis in
higher-order languages. In Proceedings of the Symposium on Princi-
ples of Programming Languages, pages 393—-407, January 1995.

[22] S.Jagannathan, S. Weeks, and A. Wright. Type-directed flow analysis
for typed intermediate languages. In International Static Analysis
Symposium, pages 232-249. Springer, 1997.

[23] M. Jenkins, L. Andersen, T. Gilray, and M. Might. Concrete and
abstract interpretation: Better together. In Workshop on Scheme and
Functional Programming, 2015.

[24] J. 1. Johnson and D. Van Horn. Abstracting abstract control. In
Proceedings of the ACM Symposium on Dynamic Languages, October
2014.

[25] J. 1. Johnson, N. Labich, M. Might, and D. Van Horn. Optimizing
abstract abstract machines. In Proceedings of the International Con-
ference on Functional Programming, September 2013.

[26] N. D. Jones and S. S. Muchnick. A flexible approach to interproce-
dural data flow analysis and programs with recursive data structures.
In Symposium on principles of programming languages, pages 6674,
1982.

[27] G. Kastrinis and Y. Smaragdakis. Hybrid context-sensitivity for
points-to analysis. In ACM SIGPLAN Notices, volume 48, pages 423—
434. ACM, 2013.

[28] A.Kennedy. Compiling with continuations, continued. In Proceedings
of the International Conference on Functional Programming, pages
177-190, New York, NY, 2007. ACM.

[29] R. Koot and J. Hage. Type-based exception analysis for non-strict
higher-order functional languages with imprecise exception seman-
tics. In Proceedings of the 2015 Workshop on Partial Evaluation and
Program Manipulation, pages 127-138. ACM, 2015.

[30] O. Lhotdk. Program analysis using binary decision diagrams. PhD
thesis, McGill University, 2006.

[31] O. Lhotdk and L. Hendren. Context-sensitive points-to analysis: is it
worth it? In Compiler Construction, pages 47-64. Springer, 2006.

[32] O.Lhotdk and L. Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 18(1):3,
2008.

[33] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the impact of
context-sensitivity on andersen’s algorithm for java programs. In ACM
SIGSOFT Software Engineering Notes, volume 31, pages 6-12. ACM,
2005.

[34] S. Liang and M. Might. Hash-flow taint analysis of higher-order
pograms. In Proceedings of the Conference on Programming Lan-
guage Analysis for Security, June 2012.

[35] J. Midtgaard. Control-flow analysis of functional programs. ACM
Computing Surveys, 44(3):10:1-10:33, Jun2012.

[36] M. Might. Environment Analysis of Higher-Order Languages. PhD
thesis, Georgia Institute of Technology, Atlanta, GA, 2007.

[37] M. Might. Abstract interpreters for free. In Static Analysis Symposium,
pages 407-421, September 2010.

[38] M. Might and P. Manolios. A posteriori soundness for non-
deterministic abstract interpretations. In Proceedings of the 10th In-
ternational Conference on Verification, Model Checking, and Abstract
Interpretation, pages 260-274, January 2009.

[39] M. Might and O. Shivers. Improving flow analyses via I'CFA: ab-
stract garbage collection and counting. In ACM SIGPLAN Notices,
volume 41, pages 13-25. ACM, 2006.

[40] M. Might, Y. Smaragdakis, and D. Van Horn. Resolving and exploiting
the k-CFA paradox: Illuminating functional vs. object-oriented pro-
gram analysis. In Proceedings of the International Conference on
Programming Language Design and Implementation, pages 305-315,
June 2010.

[41] A. Milanova, A. Rountev, and B. G. Ryder. Parameterized object sen-
sitivity for points-to analysis for java. ACM Transactions on Software
Engineering Methodology, 14(1):1-41, January 2005.

[42] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for
Java, volume 41. ACM, 2006.

[43] N. Oxhgj, J. Palsberg, and M. I. Schwartzbach. Making type inference
practical. In ECOOP92 European Conference on Object-Oriented
Programming, pages 329-349. Springer, 1992.

[44] J. Palsberg and C. Pavlopoulou. From polyvariant flow information to
intersection and union types. Journal of functional programming, 11
(03):263-317, 2001.

[45] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus.
In Theoretical Computer Science 1, pages 125-159, 1975.

[46] G. D. Plotkin. A structural approach to operational semantics. 1981.

[47] J. G. Politz, M. J. Carroll, B. S. Lerner, and S. Krishnamurthi. A tested
semantics for getters, setters, and eval in javascript. In Proceedings of
the Dynamic Languages Symposium, 2012.

[48] Racket Community. Racket programming language, 2015. URL
http://racket-lang.org/.

[49] J. F. Ranson, H. J. Hamilton, and P. W. Fong. A semantics of Python
in Isabelle/HOL. Technical Report CS-2008-04, Department of Com-
puter Science, University of Regina, Regina, Saskatchewan, December
2008.

[50] I. Sergey, D. Devriese, M. Might, J. Midtgaard, D. Darais, D. Clarke,
and F. Piessens. Monadic abstract interpreters. In ACM SIGPLAN
Notices, volume 48, pages 399-410. ACM, 2013.

[51] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. Program flow analysis: Theory and applications, pages 189—
234, 1981.

[52] O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie-Mellon University, Pittsburgh, PA, May 1991.

[53] Y. Smaragdakis, M. Bravenboer, and O. Lhotak. Pick your contexts
well: Understanding object-sensitivity. In Symposium on Principles of
Programming Languages, pages 17-30, January 2011.

[54] G. J. Smeding. An executable operational semantics for python.
Master’s thesis, Universiteit Utrecht, January 2009.

[55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics, 5(2):285-309, 1955.

[56] D. Van Horn and H. G. Mairson. Deciding k-CFA is complete for
EXPTIME. ACM Sigplan Notices, 43(9):275-282, 2008.

[57] D. Van Horn and M. Might. Abstracting abstract machines. In
International Conference on Functional Programming, page 51, Sep
2010.

[58] D. Vardoulakis and O. Shivers. CFAZ2: a context-free approach to
control-flow analysis. In Proceedings of the European Symposium on
Programming, volume 6012, LNCS, pages 570-589, 2010.

[59] H. Verstoep and J. Hage. Polyvariant cardinality analysis for non-strict
higher-order functional languages: Brief announcement. In Proceed-
ings of the 2015 Workshop on Partial Evaluation and Program Manip-
ulation, pages 139-142. ACM, 2015.

[60] A. K. Wright and S. Jagannathan. Polymorphic splitting: An effective
polyvariant flow analysis. In Proceedings of the ACM Transactions on
Programming Languages and Systems, pages 166—-207, January 1998.

