
Datalog with First-Class Facts
Thomas Gilray

Washington State University

thomas.gilray@wsu.edu

Arash Sahebolamri

Syracuse University

arash.sahebolamri@gmail.com

Yihao Sun

Syracuse University

ysun67@syr.edu

Sowmith Kunapaneni

Washington State University

sowmith.kunapaneni@wsu.edu

Sidharth Kumar

University of Illinois at Chicago

sid@uic.edu

Kristopher Micinski

Syracuse University

kkmicins@syr.edu

ABSTRACT

Datalog is a popular logic programming language for deductive

reasoning tasks in a wide array of applications, including business

analytics, program analysis, and ontological reasoning. However,

Datalog’s restriction to flat facts over atomic constants leads to

challenges in working with tree-structured data, such as derivation

trees or abstract syntax trees. To ameliorate Datalog’s restrictions,

popular extensions of Datalog support features such as existential

quantification in rule heads (Datalog
±
, Datalog

∃
) or algebraic data

types (Soufflé). Unfortunately, these are imperfect solutions for

reasoning over structured and recursive data types, with general

existentials leading to complex implementations requiring unifi-

cation, and ADTs unable to trigger rule evaluation and failing to

support efficient indexing.

We presentDL∃!, a Datalog with first-class facts, wherein every

fact is identified with a Skolem term unique to the fact. We show

that this restriction offers an attractive price point for Datalog-

based reasoning over tree-shaped data, demonstrating its appli-

cation to databases, artificial intelligence, and programming lan-

guages. We implemented DL∃! as a system Slog, which leverages

the uniqueness restriction of DL∃! to enable a communication-

avoiding, massively-parallel implementation built on MPI. We show

that Slog outperforms leading systems (Nemo, Vlog, RDFox, and

Soufflé) on a variety of benchmarks, with the potential to scale to

thousands of threads.

PVLDB Reference Format:

Thomas Gilray, Arash Sahebolamri, Yihao Sun, Sowmith Kunapaneni,

Sidharth Kumar, and Kristopher Micinski. Datalog with First-Class Facts.

PVLDB, 19(1): XXX-XXX, 2025.

doi:XX.XX/XXX.XX

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

URL_TO_YOUR_ARTIFACTS.

1 INTRODUCTION

Datalog has emerged as a de-facto standard for iterative reasoning

applications such as business analytics [6, 26], context-sensitive

program analysis [5, 14], and ontological query answering [71].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 1 ISSN 2150-8097.

doi:XX.XX/XXX.XX

Datalog’s success has been a harmony between the power of re-

cursive queries and increasingly high-performance implementa-

tions, effectively leveraging parllelism on multiple cores [52, 85],

clusters [88, 91], or even GPUs [92]. Modern implementations are

efficiently operationalized via compilation to iterated joins over effi-

cient data structures (e.g., tries [54], BTrees [53], or hash tables [44])

representing sets of tuples over word-sized values.

Unfortunately, while Datalog’s syntactic restrictions lead to

straightforward decidability results, those same restrictions make

Datalog ill-suited to applications which reason inductively over tree-

shaped data such as derivations or syntax. In this work, we intro-

duceDL∃!, an extension of Datalog to enable first-class facts.DL∃!
takes inspiration from languages such as Datalog

±
and Datalog

∃
,

which allow existential quantifiers in the head of rules [20]. DL∃!
restricts Datalog

∃
to a uniqueness quantification where every fact

implies the existence of its own identity. Such a choice meaning-

fully enhances Datalog’s expressivity—enabling a form of equality-

generating dependency [10] over tree-shaped facts. In DL∃!, ev-
ery tuple is uniquely identified by a Skolem term unique to the

fact. Such a choice rapidly enables computing over tree-shaped

data, while yielding a lock-free, communication-avoiding imple-

mentation approach, compatible with state-of-the-art parallelizing

implementation techniques for Datalog [45, 62].

We formalize DL∃! as the syntactic extension of Datalog to

include unique existential quantification (∃!) in the head of rules.

This restriction ensures that every fact is identified by a Skolem term

unique to the fact. We present a chase-based semantics for DL∃!,
whose implementation is significantly simplified by the restriction

that all facts are structurally unique, sidestepping the challenges

of unification by associating each (sub)-fact with a unique intern

id. The syntactic restrictions of DL∃! forbid unifying the head

with the body, thereby preventing cyclic reference and yielding

finite expansion sets. WhileDL∃! is only semi-decidable in general,

running subsequent iterations of aDL∃! query will always produce
increasingly-larger facts, with each iteration adding finitely-many

facts. Practically, DL∃!’s properties fortuitously enable a trivially-

parallel implementation as a simple extension of modern parallel

relational algebra implementations [44, 45, 61].

Specifically, our contributions are as follows:

(1) We introduce DL∃!, a Datalog with first-class facts, i.e., in

which all facts are uniquely identified via a nested Skolem term.

We present a semantics for DL∃! based on the restricted chase,

and then present DLS , a language which compiles down to DL∃!;
DLS enables more natural programming with directly-nested facts,

equivalent in power, and is the basis for our implementation.

https://doi.org/XX.XX/XXX.XX
URL_TO_YOUR_ARTIFACTS
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

(2) We present a series of applications demonstrating DL∃!’s
generality and relevance to a broad array of fields. Specifically,

we discuss DL∃!’s application to provenance, algebraic data (e.g.,
as included in Soufflé), functional programming (as in IncA [77]),

structural abstract interpretation [100], and type systems [78, 80].

(3) We implement Slog, a fully-featured, data-parallel engine,

which compilesDLS , with syntactic sugar, to a Message Passing In-

terface (MPI) based runtime. While there are no explicit constructs

for data parallelism in DLS , the restrictions of DL∃! enable lever-
aging recent work in (balanced) parallel relational algebra, BPRA,

which uses hash-based distribution strategies and load-balancing,

scaling to thousands of threads. We show that BPRA can be ex-

tended to support DL∃! with just a small change to its implemen-

tation: a trivially-parallelizable mechanism for tuple deduplication,

to intern and assign unique references for new tuples (§4).

(4) We evaluate Slog on a series of applications in graph analysis

with provenance and program analysis, both with and without ma-

terializing provenance information, illustrating how our framework

supports a unified perspective on first-class facts as provenance, at

most, or as unique enumerated references, at least. Operationally,

our approach enables us to design rich, highly-parallel static anal-

yses which leverage DL∃! as a foundation. We evaluate Slog by

implementing these applications and performing a series of experi-

ments showing scaling and comparisons against other state-of-art

systems. These include (a) why-provenance comparisons versus

Nemo [51], VLog [98], and RDFox [74], (b) context-sensitive anal-

ysis of Linux, and (c) results showing an exponential gap versus

Soufflé when using algebraic data types (§5).

2 DATALOGWITH FIRST-CLASS FACTS

Positive Datalog (DL+) rules contain a head and body clauses:

𝐻 (𝑥,𝑦, . . .) ← 𝐵(𝑎, 𝑏, . . .) ∧ . . .

In DL+, the body contains only positive clauses, and a rule is

safe whenever every variable in the head (𝑥,𝑦, . . .) is contained in

the body; such a restriction ensures finite solutions. It is trivial

to extend the definition of safety to stratified negation (i.e., DL):
every variable that occurs in a negated subgoal must also appear in

a positive subgoal. Such safety conditions ensure thatDL programs

may be evaluated in a bottom-up manner, iterating an immediate

consequence operator to a necessarily-finite fixed point.

Despite being a popular implementation platform for an array of

applications, Datalog’s restriction to flat rules over atomic constants

has proven limiting in applications such as ontological reasoning.

Such settings necessitate structurally representing and computing

over knowledge, well beyond the power of Datalog’s flat rules. In a

response to this limitation, a growing array of languages build upon

DL to enable reasoning over ontologies, including Datalog
±
and

Datalog
∃
. In parallel, a growing breadth of work in programming

languages compiles higher-order functional programs [77] and type

systems [78] to Datalog, grappling with its semantic limitations via

monomorphization or ad-hoc extensions.

2.1 DL∃!: its syntax and chase semantics

The core of our contribution is to identify a price point for the im-

plementation of high-performance, parallel Datalog engines which

also effectively enables applications such as provenance, ontology

reasoning, structural type systems, and functional programming.

Specifically, we introduce DL∃!, an extension of Datalog to enable

first-class facts. DL∃! introduces a single syntactic extension to

Datalog: every fact is assigned an identity, which may be otherwise

used as any other base value: referenced (selected and joined upon)

in any body clauses and used to populate any (non-id) column of

the head clause. Rules in DL∃! take the form:(
∃!id𝐻 . id𝐻 = 𝐻 (𝑥,𝑦, . . .)

)
← 𝑖𝑑𝐵 = 𝐵(𝑎, 𝑏, . . .) ∧ . . .

The ∃! in DL∃! refers to the fact that the identity of the deduced

fact is uniquely determined for this rule and all of the values used

in the head. Unlike Datalog
±
and Datalog

∃
, the logical variable

quantified by ∃ does not appear as a column but instead serves as

an annotation associated with the generated tuples. This design

choice means that the identity of the head clause cannot be unified

with logical variables in the body clauses or with other logical

variables in the head. For example, the following two rules are not

valid DL∃! queries:
Example 2.1. Ill-formed unification of annotations in DL∃!:

𝑐 = 𝐻 (𝑎, 𝑏) ← id = 𝐵(𝑎, 𝑏, 𝑐)
∃!𝑐.𝐻1 (𝑎, 𝑏) ∧ 𝐻2 (𝑎, 𝑐) ← 𝐵(𝑎, 𝑏)

By excluding unification between the identity of the head clause

and logical variables in the body or head, we ensure that identity

values are used in a strictly acyclic manner. This restriction prevents

undesired non-termination issues that can arise from chasing cyclic

dependencies. Meanwhile, forbidding identity unification across

head clauses enables more parallel implementations of the DL∃!
query engine. It simplifies the satisfaction check for existentially

quantified queries to merely verifying whether the inferred head

clause tuple already exists, thereby avoiding extra communication

in distributed settings. We will elaborate on this in Section 4.1.

The use of the existential quantifier in rule heads extends Data-

log with tuple-generating dependencies (TGDs), which trigger tuple

generation based upon the insertion of other tuples in the database.

While such an extension significantly enhances Datalog’s expres-

sivity, it comes at a cost: adding TGDs makes queries undecidable

in general and leads to infinite results. As a response, there has

been a significant amount of interest in tractable restrictions to

TGDs which ensure decidability [20, 23, 63]. Much of this work

leverages the restricted chase [21], a sound and complete algorithm

for query answering over ontologies of disjunctive existential rules.

The restricted chase discovers all derivations in bottom-up fashion,

generating labeled-nulls and unifying Skolem terms on demand.

We give the semantics of DL∃! via a variant of the restricted
chase. The function chase(Σ,I) iteratively builds a frontier of newly-
generated facts in Δ, a (potentially infinite) stream of facts; the

iteration, 𝑖 , is initially set to 0 and Δ0
is set to I, the input database.

Algorithm 1 is then repeated until Δ𝑖−1 = ∅. The algorithm finds

all possible matches 𝜃 in the current generation, and then checks

whether a first-class fact 𝐻 (𝑥, ...) exists in the database Δ[0,𝑖] , sub-
stituting the head via the match 𝜃 . If not, the algorithm generates a

fresh labeled null, building the updated substitution 𝜃 ′; last, 𝜃 ′ is
applied to the rule’s head,

(
id𝐻 = 𝐻 (𝑥, ...)

)
, to materialize the new

first-class fact. Across iterations, Δ records increasingly-tall facts,

equating each fresh null with a novel Skolem term.

2

Algorithm 1 applyRules(Σ, Δ, 𝑖)

1: Δ𝑖+1 = ∅
2: for all

(
∃!id𝐻 .𝐻 (𝑥, ...) ← 𝜙

)
∈ Σ do

3: for all match 𝜃 of 𝜑 over Δ[0,𝑖] with 𝜑𝜃 ∩ Δ𝑖 ≠ ∅ do
4: if Δ[0,𝑖] ̸ |=

(
∃!id𝐻 .id𝐻 = 𝐻 (𝑥,𝑦, ...)

)
𝜃 then

5: 𝜃 ′ = 𝜃 ∪ {id𝐻 ↦→ 𝑛} where 𝑛 is a fresh null value

6: Δ𝑖+1 = (Δ𝑖+1 ∪
(
id𝐻 = 𝐻 (𝑥, ...)

)
𝜃 ′) \ Δ[0,𝑖]

7: end if

8: end for

9: end for

10: 𝑖 = 𝑖 + 1

Example 2.2. Consider the following two DL∃! rules:

∃!id𝑇 . id𝑇 = 𝑇 (id𝐺) ← id𝐺 = 𝐺 (𝑥) ∧ 𝑥 = 𝐴()
∃!id𝑇 ′ . id𝑇 ′ = 𝑇 (id𝐺 ′) ← id𝑇 = 𝑇 (id𝐺)

∧id𝐺 = 𝐺 (id𝐺 ′) ∧ id𝐺 ′ = 𝐺 (𝑥)

Consider we start with I such that:

Δ0 = { id𝐴 = 𝐴(), id𝐺1 = 𝐺 (id𝐴 = 𝐴())
, id𝐺2 = 𝐺

(
id𝐺1 = 𝐺 (id𝐴 = 𝐴())

)
}

Notice that the database is referentially closed in the sense that

every referenced sub-fact is included in Δ0
; we will more rigorously

define this property shortly. Continuing the chase, we conclude:

Δ1 = {id𝑇 1 = 𝑇 (id𝐺1 = 𝐺 (id𝐴 = 𝐴()))}
Δ2 = {id𝑇 2 = 𝑇 (id𝐺2 = 𝐺 (id𝐺1 = 𝐺 (id𝐴 = 𝐴())))}
Δ3 = ∅

Like Datalog
±
and Datalog

∃
, the restricted chase forDL∃! is un-

decidable in general, evidenced by the fact that it is possible to build

an interpreter for the 𝜆 calculus in DLS (Figure 3). However, the

behavior of the restricted chase given in Algorithm 1 is simplified

by the fact that facts are uniquely identified. This fact eliminates

the challenge of unification, as facts are simply assigned a primary

key associated with a Skolem term. With respect to chase termina-

tion, the programs for which Algorithm 1 does not terminate are

precisely those which generate an unbounded number of ids. For
any DL∃! program which produces facts bounded by any finite

𝑛, Algorithm 1 necessarily terminates; in § 3.1, we use this fact to

establish the decidability of the Datalog subset of DL∃!.

2.2 From DL∃! to DLS

⟨Prog⟩ ::= ⟨Rule⟩∗
⟨Rule⟩ ::= R(⟨Subcl⟩, . . .) ← ⟨Clause⟩, . . .
⟨Clause⟩ ::= id = R(⟨Subcl⟩, . . .)
⟨Subcl⟩ ::= R(⟨Subcl⟩, . . .) | ⟨Var⟩ | ⟨Lit⟩
⟨Lit⟩ ::= ⟨Number⟩ | ⟨String⟩ | ...

Figure 1: Syntax of DLS : R is a relation name.

We now extend DL∃! to DLS , syntactic sugar on top of DL∃!
which allows syntactically-nested facts and patterns, such as𝐺 (𝐺 (𝑥)).
The syntax of DLS is shown in Figure 1. As in Datalog, a DLS
program is a collection of Horn clauses. Each rule 𝑅 contains a set

of body clauses and a head clause, denoted by Body(𝑅) andHead(𝑅)

flatten : ⟨Rule⟩ → ⟨Rule⟩

flatten(𝑟𝑢𝑙𝑒) ≜ Head(𝑟𝑢𝑙𝑒) ←
⋃

cl∈Body(rule)
clause(cl)

clause : ⟨Clause⟩ → P(⟨Clause⟩)

clause(id = R(. . . , scl𝑗)) ≜ {id = R(. . . , scl′𝑖 , . . .)} ∪
⋃
𝑖

cset𝑖

where scl′𝑖 , cset𝑖 = subcl(scl𝑖)
subcl : ⟨Subcl⟩ → ⟨Subcl⟩ × P(⟨Clause⟩)

subcl(R(. . . , scl𝑗)) ≜ id, {id = R(. . . , scl′𝑖 , . . .)} ∪
⋃
𝑖

cset𝑖

where scl′𝑖 , cset𝑖 = subcl(scl𝑖) and id is fresh

subcl(scl) ≜ scl, { } where scl ∈ ⟨Var⟩ ∪ ⟨Lit⟩

Figure 2: Compiling DLS into DL∃!

respectively.DLS programs must also be well-scoped: variables ap-

pearing in a head clause must also be contained in the body; notice

that DLS omits the existential quantification and assignment in

the head, making the quantifier implicit. The definition of DLS is

given via a syntax-directed translation given in Figure 2, which tra-

verses rule bodies top-down to flatten their structure, decomposing

nested clauses and flattening them to expose explicit identities. For

each subclause, the subcl function is used to recursively flatten it to

a set of flat clauses and a single value that uniquely identifies the

original subclause without containing any structured subclauses.

2.3 Fixed-point Semantics

The fixed-point semantics of aDLS program 𝑃 is given via the least

fixed point of an immediate consequence operator IC𝑃 : DB→ DB.
Intuitively, this immediate consequence operator derives all of the

immediate implications of the set of rules in 𝑃 . A database db is a set
of facts (db ∈ DB = P(Fact)). A fact is a clause without variables:

Fact ::= R(Val, . . .) Val ::= R(Val, . . .) | Lit
In Datalog, Vals are restricted to a finite set of atoms (ValDL ::= Lit).
To define 𝐼𝐶𝑃 , we first define the immediate consequence of a rule

𝐼𝐶𝑅 : 𝐷𝐵 → 𝐷𝐵, which supplements the provided database with

all the facts that can be derived directly from the rule given the

available facts in the database:

IC𝑅 (𝑑𝑏) ≜ 𝑑𝑏 ∪
⋃{

subfact(Head(𝑅)
[−−−→
𝑣𝑖\𝑥𝑖

]
) |

{−−−−−−→𝑥𝑖 → 𝑣𝑖 } ⊆ (Var × Val) ∧ Body(𝑅)
[−−−→
𝑣𝑖\𝑥𝑖

]
⊆ 𝑑𝑏

}
The subfact function has the following definition:

subfact
(
R(item1, ... , item𝑛)

)
≜ {R(item1, ... , item𝑛)}
∪⋃𝑖∈1...𝑛 subfact(item𝑖)

subfact(𝑣)𝑣∈Lit ≜ {}
The purpose of the subfact function is to ensure that all nested

facts are included in the database, a property we call subfact-closure.
This is also the semantic counterpart to flatten from Figure 2.

The immediate consequence of a program is the union of the im-

mediate consequence of each of its constituent rules, IC𝑃 (db) ≜
3

db ∪ ⋃
𝑅∈𝑃 IC𝑅 (db). Observe that IC𝑃 is monotonic over the lat-

tice of databases whose bottom element is the empty database.

Therefore, if IC𝑃 has any fixed points, it also has a least fixed point

[94]. Iterating to this least fixed point directly gives us a naïve, in-

computable fixed-point semantics for DL∃! programs. Unlike pure

Datalog, existence of a finite fixed point is not guaranteed inDL∃!
This is indeed a reflection of the fact thatDL∃! is Turing-complete.

TheDL∃! programs whose immediate consequence operators have

no finite fixed points are non-terminating. Results formalized in

Isabelle/HOL proof assistant are marked with .

Lemma H1 . The least fixed point of IC𝑃 is subfact-closed.

It is worth pointing out that the fixed point semantics of Datalog

is similar, the only difference being that the subfact function is not

required, as Datalog clauses do not contain subclauses.

2.4 Model-theoretic Semantics

The model-theoretic semantics of DL∃! closely follows the model

theoretic semantics of Datalog, as presented in, e.g., [24]. The Her-
brand universe of a DL∃! program is the set of all of the facts that

can be constructed from the relation symbols appearing in the pro-

gram. Because DL∃! facts can be nested, the Herbrand universe of

any nontrivial DL∃! program is infinite. For example, N may be

encoded in DL∃! using the zero-arity relation Zero and a unary

relation Succ. The Herbrand universe produced by just these two

relations, one zero arity and one unary, is inductively infinite.

A Herbrand Interpretation of a DL∃! program is any subset of

its Herbrand universe that is subfact-closed. I.e., if 𝐼 is a Herbrand

Interpretation, then 𝐼 =
⋃{subfact(𝑓) | 𝑓 ∈ 𝐼 }. For Datalog, the

Herbrand Interpretation is defined similarly, with the difference

that subfact-closure is not a requirement for Datalog, as Datalog

facts do not contain subfacts.

Given a Herbrand Interpretation 𝐼 of a DL∃! program 𝑃 , and a

rule 𝑅 in 𝑃 , we say that 𝑅 is true in 𝐼 (𝐼 |= 𝑅) iff for every substitution

of variables in 𝑅 with facts in 𝐼 , if all the body clauses with those

substitutions are in 𝐼 , so is the head clause of 𝑅 with the same

substitutions of variables.

𝐼 |= 𝑅 iff ∀{−−−−−−→𝑥𝑖 → 𝑣𝑖 } . Body(𝑅)
[−−−→
𝑣𝑖\𝑥𝑖

]
⊆ 𝐼 −→ Head(𝑅)

[−−−→
𝑣𝑖\𝑥𝑖

]
∈ 𝐼

If every rule in 𝑃 is true in 𝐼 , then 𝐼 is a Herbrand model for 𝑃 .
The denotation of 𝑃 is the intersection of all Herbrand models of 𝑃 .

We defineM(𝑃) to be the set of all Herbrand models of 𝑃 , and 𝐷 (𝑃)
to be 𝑃 ’s denotation. Then, 𝐷 (𝑃) ≜ ⋂

𝐼 ∈ M(𝑃)
𝐼 . Such an intersection is

also a Herbrand model:

Lemma H2 . The intersection of a set of Herbrand models is also
a Herbrand model.

Unlike Datalog, nontrivial DL∃! programs have Herbrand uni-

verses that are infinite. Thus, a DL∃! program may have only

infinite Herbrand models. If a DL∃! program has no finite Her-

brand models, its denotation is infinite and so no fixed-point may

be finitely calculated using the fixed-point semantics.We now relate

the operational semantics of DL∃! to its model-theoretic seman-

tics: we elide a detailed proof, but refer the reader to our Isabelle

implementation.

2.5 Equivalence

To show that the model-theoretic and fixed-point semantics of

DL∃! compute the same Herbrand model, we need to show that

the least fixed point of the immediate consequence operator is equal

to the intersection of all the Herbrand models for any program.

LemmaH3 . Herbrandmodels of aDL∃! program are fixed points
of the immediate consequence operator.

Lemma H4 . Fixed points of the immediate consequence operator
of a DL∃! program that are subfact-closed are Herbrand models of
the program.

By proving that the Herbrand models and subfact-closed fixed

points of the immediate consequence operator are the same, we

conclude that the least fixed point of the immediate consequence

operator IC𝑃 (a subfact-closed database) is equal to the intersection

of all its Herbrand models.

Theorem H1 . The model theoretic semantics and fixed point
semantics of DL∃! are equivalent.

3 APPLICATIONS OF FIRST-CLASS FACTS

We now ground our exploration of DL∃! in some familiar frame-

works. To begin with, we observe that DL∃! strictly extends Dat-

alog: any Datalog program is a terminating DL∃! program (and

vice-versa, though with a potential complexity blowup). However,

the true power ofDL∃! lies in its ability to express queries wherein

first-class facts are recursively (a) used as triggers and (b) generated

by the computation. In effect, the combination of first-class rules

and recursion enables ad-hoc polymorphic rules, which enable an

expressive programming style similar to functional programming

and natural deduction. We explore this power by a series of ap-

plications including provenance, algebraic data types, functional

programming, structural abstract interpretation, and type systems.

3.1 Datalog in DL∃! and DLS
Definition 3.1 (Datalog programs in DL∃! and DLS). The Data-

log subset ofDL∃! is a subset wherein all occurrences of the binders
for ids in the body are wildcards.

Theorem 3.2 (Datalog Programs Terminate). If 𝑃 is a Datalog
program in DL∃!, or DLS , then the program terminates.

Proof. For DL∃!, termination follows directly from the fact

that the restricted chase for Datalog programs without existentials

necessarily has a finite number of iterations: because the bodies of

rules 𝜙 in Algorithm 1 may not bind id columns (only wildcards),

there is no ability to build a Skolem term of non-trivial height.

Thus, as in Datalog, the restricted chase for DL∃! terminates. The

termination for DLS follows similarly: because the body may not

bind any ids in the variables 𝑥𝑖 , the height of terms produce by

subfact may not increase throughout iterated application of IC𝑅 . □

3.2 Provenance in DL∃!
Database provenance refers to the concept of tracking the origin

of a database record. In Datalog and knowledge-graph reasoning,

the coarsest and most popular form of provenance is lineage (why-

provenance) which, for each tuple in the output (IDB), identifies

4

a set of contributing tuples from the input (EDB) [25, 31]. Typical

implementations of lineage eagerly annotate each tuple with a tag

during query computation to track its origin, and Datalog rules are

rewritten to propagate the derivation order of these tags. After the

query finishes, lineage is collected by computing the downward

closure on the derivation graph, gathering all reachable leaf nodes

to explain the tuple’s origin. Such annotations are naturally iso-

morphic to the id values generated when evaluating existentially

quantified queries in DL∃!. Meanwhile, DL∃!’s ability to directly

construct nested facts naturally facilitates eager derivation compu-

tation. The derivation graph can be represented as a binary relation,

deriv, which tracks all tuple ids from the body clauses of a Datalog

rule to its head clause. For example, the derivation of the rule:

𝐻 (𝑎, 𝑐) ← 𝐵0 (𝑎, 𝑏) ∧ 𝐵1 (𝑏, 𝑐)

can be a computed via:

∃!id3, id4 . id3 = deriv(id0, id) ∧ id4 = deriv(id1, id) ←
id0 = 𝐵0 (𝑎, 𝑏) ∧ id1 = 𝐵1 (𝑏, 𝑐) ∧ id = 𝐻 (𝑎, 𝑐) .

After constructing the derivation graph, the downward closure can

be efficiently computed as a reachability query from the IDB tuple

id to the EDB, identifying all contributing input tuples.

The eager approach stores complete provenance information

for every tuple in the Datalog relation. Once the rule is computed,

further analysis can be easily performed by querying the gener-

ated provenance relation. However, eagerly tracking provenance

in datalog is data-intensive, with its time complexity proven to

be NP [18]. In some specific applications, such as debugging, only

the provenance of a few specific tuples is required. A cheaper but

incomplete alternative is to compute the provenance in an lazy

approach (also called on-demand approach). Instead of generating

the full provenance during query evaluation, this method computes

provenance only for the specific tuple that needs explanation or

debugging. This involves extracting constraint formulas from the

input and output databases and solving them using techniques such

as SAT [19] or semi-ring solvers [36].

AlthoughDL∃!’s semantics eagerly annotates all tuples—naïvely

yielding eagerly-materialized provenance—a hybrid approach can

still be adopted by using a first-class fact to trigger lineage com-

putation, similar to lineage tracking in the WHIPS system [30]. To

lazily materialize the lineage, we may modify the previous rule:

∃!id5, id6 . id5 = explain_t(id0) ∧ id6 = explain_t(id1) ←
id0 = 𝐵0 (𝑎, 𝑏) ∧ id1 = 𝐵1 (𝑏, 𝑐) ∧ id3 = 𝐻 (𝑎, 𝑐)∧
id4 = explain_t(𝑖𝑑).

Here, the explain_t relation constrains the search space. It initially

stores the single tuple that needs to be explained, and during the

computation, it is gradually expanded to include all tuples that

cover the nodes in the derivation paths leading to the initial tuple.

After explain_t has been propagated, the EDB relation IDs stored

within it will be the why-provenance associated with the initial

tuple needing explanation.

While why-provenance tracks the origin of each output tuple by

annotating entire rows, where-provenance goes further by anno-

tating individual columns [17]. This approach identifies the exact

source locations (i.e., specific columns in the input data) that con-

tribute to each value in the output, allowing for fine-grained tracing

of data lineage at the attribute level.

In DL∃!, a naïve way to capture where-provenance is to asso-

ciated each concrete column value in a EDB relation with a tuple

in column relation, whose id is isomorphic to the column annota-

tion in definition of where-provenance. For example, the where-

provenance prov𝐻 of relation 𝐻 in query 𝐻 (𝑎, 𝑐) ← 𝐵0 (𝑎, 𝑏) ∧
𝐵1 (𝑏, 𝑐) can be materialized as:

∃! id𝐻 .id𝐻 = prov𝐻 (id𝑎0, id𝑐1) ←
id0 = 𝐵0 (𝑎, 𝑏) ∧ id1 = 𝐵1 (𝑏, 𝑐)
id𝑎0 = column(id0, 0, 𝑎) ∧ id𝑏0 = column(id0, 1, 𝑏)∧
id𝑏1 = column(id1, 0, 𝑏) ∧ id𝑐1 = column(id1, 1, 𝑐)

Here, column is a ternary relation, where column(𝑖, 𝑘, 𝑣) indicate
the 𝑘-th column value of tuple associate with identity 𝑖 is 𝑣 .

3.3 Algebraic data types

Some Datalogs have a dedicated system for algebraic data types

(ADTs) supporting records, unions, and tagged variants. For ex-

ample, Soufflé offers a useful ADT system with heap-allocated

structured values. In Soufflé, a heap-allocated structure is denoted

with a $ sign; so, the following example is a Soufflé rule that says

if a lambda exists as a subexpression of any parent expression (_),

then its body eb is a subexpression of the lambda abstraction:

subexpr($lam(x, eb), eb) :- subexpr(_, $lam(x, eb)).

Unfortunately, ADTs cannot trigger rule evaluation and are not

indexed—which has a performance impact we explain further in

§5. For this reason, Soufflé requires we assert that the lambda is

a subexpression of any expression since the lambda-syntax value

must be referenced from some fact before it can be manipulated

by a rule. Soufflé implements this rule as a scan of the subexpr
relation, extraction of its second-column value, a lookup of that

value’s second field, a guard to check that it is a lambda, and finally,

insertion of the lambda paired with its body-reference eb in the

subexpr relation. By contrast, typical Datalog evaluation relies

on relational joins, which do not normally require any guard but

are implemented using an efficient B-tree lookup to determine the

exact relevant tuples for the join. Following is an example that

builds a transitive within relation from this subexpr relation. It is

implemented in Soufflé using a relational union, a scan and insert,

for the first rule, and a binary join (fused with a projection of the

shared column) for the second rule. Operationally, this join would

scan the outer relation within, lookup only those ec values that are
paired with the relevant ei in subexpr using its tree-based index,

and then insert each unique e,ec tuple into within. Here (Soufflé

code), within is computed as the transitive closure of subexpr:

within(e, ec) :- subexpr(e, ec).
within(e, ec) :- within(e, ei), subexpr(ei, ec).

In Soufflé, since ADTs are heap allocated and not indexed the way

(top-level) facts are, these values cannot be efficiently selected for

in the course of a relational join operation. Because Soufflé cannot

easily index its ADTs, a scan-and-filter approach is used. Consider

a rule that computes a relation shadows pairing each lambda with

each other lambda that defines a shadowing variable.

5

shadows($lam(x, eb0), $lam(x, eb1)) :-
subexpr(_, $lam(x, eb0)), within(eb0, e),
subexpr(e, $lam(x, eb1)).

Operationally, this is implemented as a three-way join between

subexpr, within, and subexpr (which takes advantage of indexes

for these relations), introspecting on the outer lambda to determine

its body value (eb0) during this join, followed by introspection on

the inner lambda to determine whether both x values match, before

inserting relevant pairs of lambdas into shadows. This implicitly

materializes the Cartesian product of nested lambda values encoun-

tered during the join (in time, not space) before filtering to only

insert those with matching formal parameters. Because $lam values
are scattered in memory and only referenced from top-level rela-

tions and are not collectively indexed, there is no straightforward

way to efficiently select just those $lam values that are relevant to

a particular x as we could when selecting subexpr values with a

particular e. The code generated by Soufflé for a similar case, from

a program analysis, is shown in Figure 7.

3.4 Functional Programming

With first-class facts that can trigger rule evaluation, and that are in-
dexed automatically and amenable to efficient joins, natural idioms

emerge for performing efficient functional programming within

Datalog, that will benefit from data-parallel deduction as detailed in

Section 4. First-class facts permit Reynolds’ defunctionalization [84],
a classic transformation from higher-order functions to first-order

functions with ad hoc polymorphism over structured values. Note

that first-class facts gives us precisely the features we need to im-

plement this: structured data that can trigger rule evaluation via

(naturally polymorphic) joins on their identity!

To illustrate this, consider the 𝜆-calculus interpreter presented

in Figure 3. The upper left shows the traditional big-step (natural-

deduction style) rules of inference, that define relation (⇓), for
evaluating variable references, lambda abstractions, and lambda

applications. The right side shows a corresponding interpreter in

DLS . The bottom left gives rules for defunctionalized higher-order

environments built using a chain of (↦→) facts. E.g., the first-class
map [0 ↦→ 1, 2 ↦→ 3] can be constructed as ↦→(↦→(⊥(), 0, 1), 2, 3),
using these rules, and then accessed efficiently via lookup.

A 3-way join between this lookup relation, a syntax-encoding

ref relation, and an eval relation, implements variable reference in

our interpreter. The eval relation encodes an input 𝑒, 𝜌 pair so the

interpreter can be demand driven; the (⇓) relation associates an eval
input with its output, the value it denotes. The second rule joins

the eval and (𝜆) relations, and builds closures, clo facts, that are
associated with the eval fact in (⇓). The final App rule is encoded
as four DLS rules because it makes three recursive uses of the

interpreter. Our implementation of DLS as a full language, Slog

(discussed in Section 4) provides syntactic sugar that will perform

this transformation of a single rule into multiple rules for the user

automatically, but in this paper we present it desugared to focus

on the key principles at play. The rule shown with a conjunction

in the head is really two DLS rules that infer both subexpressions

of an application must be evaluated before the application itself.

The bottom rule deduces that once these subexpressions have been

evaluated, the body of the function being applied must be evaluated

under an extended environment that binds the formal parameter

𝑒, 𝜌 ⇓ 𝑣
Var

𝑣 = 𝜌 (𝑥)
𝑥,𝜌 ⇓ 𝑣

⇓ (call, 𝑣) ←
call = eval(ref(𝑥), 𝜌),
_= lookup(𝜌, 𝑥, 𝑣)

Abs (𝜆 (𝑥) 𝑒),𝜌 ⇓ ⟨(𝜆 (𝑥) 𝑒),𝜌⟩
⇓ (call, clo(lam, 𝜌)) ←

call = eval(lam, 𝜌),
lam = 𝜆(𝑥, 𝑒)

App

𝑒𝑓 ,𝜌⇓⟨(𝜆 (𝑥) 𝑒𝑏),𝜌𝜆⟩
𝑒𝑎,𝜌⇓𝑣𝑎 𝑒𝑏 ,𝜌𝜆 [𝑥 ↦→𝑣𝑎]⇓𝑣

(𝑒𝑓 𝑒𝑎),𝜌 ⇓ 𝑣

⇓ (call, 𝑣) ←
call = eval(app(𝑒𝑓 𝑒𝑎), 𝜌),
_= ⇓ (eval(𝑒𝑓 , 𝜌),

clo(𝜆(𝑥, 𝑒𝑏), 𝜌𝜆)),
_= ⇓ (eval(𝑒𝑎, 𝜌), 𝑣𝑎),
_ = ⇓ (eval(𝑒𝑏 , 𝜌′, 𝑣),
𝜌′ = ↦→(𝜌𝜆, 𝑥, 𝑣𝑎))

Defunctionalized Environments

lookup(𝜌, 𝑥, 𝑣) ←
𝜌 = ↦→(_, 𝑥, 𝑣)

lookup(𝜌, 𝑥, 𝑣) ←
𝜌 = ↦→(𝜌′, 𝑦, _),
𝑥 ≠ 𝑦,
lookup(𝜌′, 𝑥, 𝑣)

eval(𝑒𝑓 , 𝜌), eval(𝑒𝑎, 𝜌) ←
_=eval(app(𝑒𝑓 𝑒𝑎), 𝜌)

eval(𝑒𝑏 , ↦→(𝜌𝜆, 𝑥, 𝑣𝑎)) ←
_=eval(app(𝑒𝑓 𝑒𝑎), 𝜌),
_= ⇓ (eval(𝑒𝑓 , 𝜌),

clo(𝜆(𝑥, 𝑒𝑏), 𝜌𝜆)),
_= ⇓ (eval(𝑒𝑎, 𝜌), 𝑣𝑎)

Figure 3: Lambda-calculus interpreter (⇓) in DLS .

(𝑥) to the argument value (𝑣𝑎) using a (↦→) fact. Finally, the top
rule (shown parallel to App on the left) puts this all together and

deduces that the application expression’s value is the same as that

of the function body under the appropriate environment.

IncA, the other recent approach to encoding functional program-

ming in Datalog [77, 78] requires static monomorphization as a

compilation approach because it is not able to directly leverage

first-class facts to perform proper defunctionalization. Our exten-

sion, DL∃!, grants us an efficient implementation approach that

may be extended to a scalable system for performing data-parallel

functional programming in Datalog. Sections 4 and 5 present fur-

ther details of our practical system and evaluate it on applications

that leverage the functional techniques we’ve discussed.

3.5 Structural Abstract Interpretation

A principal application motivating recent developments in Data-

log has been high-performance declarative simulations of complex

systems, especially software. Static program analyses aim to model

software soundly based on the program text alone, with sufficient

precision to prove meaningful correctness, security, observational

equivalence, information flow, and other properties. Over the past

decade or so, a line of work has gone into systematic and tunable

approaches to applying abstract interpretation (AI) [27–29] to struc-

tural operational semantics [50, 82] and natural semantics [55] via

a structural abstraction that is as straightforward as possible. The

abstracting abstract machines (AAM) methodology [67, 100] pre-

scribes a particular systematic application of abstract interpretation

on abstract-machine operational semantics like those we built in

§3.4—this approach is a natural one for traditional Datalog-based

analyses as it requires a flat, small-step semantics with a particular

6

// Eval states
ret(v,k) :- eval($Ref(x),env,k,_),

env_map(x,env,a), store(a,v).
ret($Clo($Lam(x,body),env),k) :-

eval($Lam(x,body),env,k,_).
eval(ef,env,$ArK(ea,env,$App(ef,ea),c,k),c) :-

eval($App(ef,ea),env,k,c).
// Ret states
eval(ea,env,$FnK(vf,call,c,k),c) :-

ret(vf,$ArK(ea,env,call,c,k)).
apply(call,vf,va,k,c) :- ret(va,$FnK(vf,call,c,k)).
ret(v,k) :- ret(v,$KAddr(e,env)),kont_map($KAddr(e,env),k).
program_ret(v) :- ret(v, $Halt()).
// Apply states
eval(body,$UpdateEnv(x,

$Address(x,[call,[hist0,[hist1,nil]]]),env),
$KAddr(body,$UpdateEnv(x,

$Address(x,[call,[hist0,[hist1,nil]]]),env)),
[call,[hist0,[hist1,nil]]]),

kont_map($KAddr(body,
$UpdateEnv(x,$Address(x,

[call,[hist0,[hist1,nil]]]),env)),k),
store($Address(x,[call,[hist0,[hist1,nil]]]),va),
env_update(env,$UpdateEnv(x,

$Address(x,[call,[hist0,[hist1,nil]]]),env)) :-
apply(call,$Clo($Lam(x,body),env),va,k,[hist0,[hist1,_]]).

// Propagate free vars
env_map(x,env1,a) :- env_update(env,env1),

env1 = $UpdateEnv(x,a,env).
env_map(x,env1,a) :- env_update(env,env1),

env_map(x,env,a).

Figure 4: A global-store𝑚-CFA—evaluated in Table 2.

abstraction of the stack (once explicitly modeled in the semantics).

Some AAM-based approaches have encapsulated the abstraction

in a tunable monadic interpreter [89]. A related trend toward ab-
stracting definitional interpreters (ADI) [13, 32] follows a similar

approach, except applies AI directly to naturally recursive defini-

tional interpreters, sometimes using a monad transformer stack

for tunable abstraction and a partial-evaluation-based approach to

achieve performance in the implementation [3, 102, 103].

The literature on the AAM approach shows that a store-passing
transformation (as might also be used tomodel, e.g., direct mutation)

can handle indirect recursion in the abstract domains (e.g., bind-
ing environments contain closures which contain environments)

through a set of references that are finitized under AI [67]. This

forms a key preparatory transformation enabling a straightforward

homomorphic structural abstraction to follow. For any abstract-

machine component referenced through the store, the allocation of

its abstract addresses becomes an expressive proxy for tuning the

polyvariance (e.g., context sensitivity, flow sensitivity) of those anal-

ysis components, and one with the notable property that soundness

can be guaranteed for all tunings of abstract allocation [43, 68]. This

is likewise the natural approach for continuation-passing abstract

machines that store-allocate continuations at function calls [100],

and is a key enabling technique as AAMs require some way of

finitizing otherwise-unbounded recursive evaluation. A particular

reflective choice of address for continuations (the function entry

point, in the analysis, including its abstract environment, after pa-

rameters are bound) can guarantee the analysis is equivalent to a

pushdown system with an unbounded stack [46]. A wide variety

of heavyweight verification tasks can be built atop this foundation,

including higher-order pointer and shape analysis [41, 42, 69] and

abstract symbolic execution [75, 96].

We implement a core AAM-based analysis that permits an apples-

to-apples comparison between our system Slog that implements

Γ ⊢ 𝑒 : 𝜏

T-Var

𝑥 :𝑇 ∈ Γ
Γ ⊢𝑥 :𝑇

id0 = ck(ref(𝑥), Γ),
_ = lookup(Γ, 𝑥,𝑇)
→ type(id0,𝑇)

T-Abs

Γ,𝑥 :𝑇1 ⊢ 𝑒 :𝑇2
(𝜆 (𝑥 :𝑇1) 𝑒) :𝑇1→𝑇2

id0 = ck(𝜆(𝑥,𝑇1, 𝑒), Γ),
_ = type(ck(𝑒, 𝜌′),𝑇2)
𝜌′ = ↦→(Γ, 𝑥,𝑇1)
→ type(𝑖𝑑0, arrow(𝑇1,𝑇2))

T-App

Γ ⊢ 𝑒0 :𝑇0→𝑇1 𝑒1 :𝑇0
Γ ⊢ (𝑒0 𝑒1) :𝑇1

id0 = ck(app(𝑒0, 𝑒1), Γ),
_ = type(ck(𝑒0, Γ), arrow(𝑇0,𝑇1)),
_ = type(ck(𝑒1, Γ),𝑇0),
→ type(id0,𝑇1)

Figure 5: STLC type rules (left); equivalent DLS (right).

DL∃! (see §4), and Soufflé (see §3.3). It is derived from a stack-

passing interpreter—a call-by-value Krivine’s machine [58]—with a

store factored out. Figure 4 shows our small-step control-flow anal-

ysis (CFA) in Soufflé with a global store and a tunable instrumenta-

tion. The original 𝑘-CFA [90] used true higher-order environments,

unlike equivalent analyses written for object-oriented languages

which used flat objects. Our analysis in Figure 4 is implemented as

the corresponding CFA for functional languages, called𝑚-CFA [70],

and is used in our evaluation to compare first-class fact vs ADT

handling in Slog vs Soufflé (see §5.2).

3.6 Type Systems

Structural type theories provide a formal framework for ensuring

that programs are free from runtime type errors [80]. Such systems

grew out of a rich history of constructive logic (e.g., Per Martin-

Löf’s intuitionistic type theory [65]), typically specifying typing

rules via natural deduction, and form the basis of type checking and

inference systems in myriad modern programming languages, such

as OCaml and Haskell. Implementing type checkers for structural

type systems involves iteratively traversing a program’s abstract-

syntax tree and attempt to assemble a valid type derivation which

adheres to the typing judgement for the given language.

Traditionally, structural type systems have been implemented

in functional programming languages, using recursion and pattern

matching. However, Datalog has attracted recent attention in imple-

menting type systems due to its logic-defined nature, along with the

potential for automatic incrementalization and high-performance

compilation [76, 78]. These efforts are challenged by Datalog’s

semantic restrictions: type systems often involve traversing tree-

shaped abstract syntax trees and assembling tree-shaped typing

derivations. As such, Datalog-based type systems require tedious

refactoring of the type system, carefully compiling type check-

ing algorithms into rules which respect Datalog’s restrictions via

techniques such as monomorphization, ultimately yielding imple-

mentations which are far removed from the original typing rules.

We have found that DL∃! has proven a promising implemen-

tation candidate for structural type systems, and have used DLS
to implement numerous type checkers for a range of systems in-

cluding first-order dependent types [81] and intuitionistic type

theory [65]. As an example, Figure 5 shows a transliteration of the

7

Simply-Typed Lambda Calculus (STLC) intoDLS , following a text-
book presentation [80]. The left-hand side of the figure displays the

three type rules for STLC. The first says that if 𝑥 has type 𝑇 in typ-

ing environment Γ, then 𝑥 can be checked to the type 𝑇 in Γ. This
is mirrored by the DLS rule on the right, which uses the ck fact to

trigger lookup of 𝑥 (using the defunctionalized environments from

the bottom of Figure 3) and materialization of the type judgement.

The second rule triggers when a lambda is checked, subsequently

extending the environment and checking the type of the body, fi-

nally assembling an function (arrow) type. Last, T-App checks an
application, ensuring that the function’s input (𝑇0) matches with

𝑒1’s type. In STLC, the simple nature of types means that DL∃!’s
structural equality suffices for type comparison’ More complex type

systems equate types, would also implementing a function to (e.g.,)
canonicalize types. Last, we omit rules to trigger ck for subordinate
expressions for brevity; our implementation uses syntactic sugar

to enable writing a single rule for each of these cases.

4 SLOG: IMPLEMENTING DLS
In this section, we describe the implementation of DLS as a prac-

tical language. Structured Datalog (Slog) represents a language

design and implementation methodology based on DL∃!, Data-
log extended with the principle that all facts are also first-class

structured data and every structured datum is a first-class fact. We

have implemented Slog in a combination of Racket (the compiler,

roughly 10,600 new lines), C++ (the runtime system and parallel RA

backend; roughly 8,500 new lines), Python (a REPL and daemon;

roughly 2,500 new lines), and in Slog (60 lines for language feature

support). In Slog, fact identities are implemented as 64-bit primary

keys implemented via a distributed and parallel autoinc.
Our Racket-based compiler translates Slog source code to C++

that links against our parallel relational-algebra backend. Our com-

piler is structured in the nanopass style [57], composed of a larger

number of small passes which consume and produce various forms

of increasingly-low-level intermediate representations (IRs). After

parsing, an organize pass performs various simplifications, such

as canonicalizing the direction of implication (-->) and splitting

disjunctive body clauses and conjunctive head clauses into multiple

rules. This pass also eliminates various syntactic niceties of the

language. Subsequent passes perform join planning, then index

generation: computing a minimal necessary set of shared indices,

ensuring there is always an interning index that models the relation

as a mapping from fact-tuple values to an unsigned 64-bit integer
encoding a unique intern id for that fact. The compiler then performs

Strongly Connected Component (SCC) computation with Tarjan’s

algorithm [93] and stratifies grounded fact-negation operations

and aggregation operations. Then, the compiler performs incre-

mentalization, or the so-called semi-naïve transform in which rules

are triggered by the delta of a relation accessed as a body clause—

reducing the substantial recomputation of so-called naïve fixpoint

evaluation. Finally, the compiler writes out a set of optimized and

pass-fused relational algebra operations (e.g., join followed by pro-

jection) in C++ .

Intra-bucket
Comm

Rank 1

Rank2

Rank 3

Rank 4

Local join All-to-all
comm

Rank 0

Tuple
insertion

Interning
Fixed
point

?

No

Figure 6: An illustration of the main phases of our parallel

RA backend.

4.1 MPI-based Data-parallel Implementation

We extend an MPI-based Datalog back-end from our prior work

on data-parallel relational algebra [44, 45, 62], to demonstrate that

the key extension of Datalog we propose is naturally data-parallel,

fact identity being derived from reads over indices in precisely the

same data-parallel manner as rule evaluation in Datalog.

Our parallel relational-algebra (RA) backend supports fixed-point

iterations and is designed for large-scale multi-node HPC clusters.

Based on the bulk-synchronous-processing protocol and built using

the MPI-everywhere model [40, 105], the parallel RA framework

addresses the problem of partitioning and balancing workloads

across processes by using a two-layered distributed hash table [44].

In order to materialize newly generated facts within each iteration,

and thus facilitate iterated RA (in a fixed-point loop), an all-to-all

data exchange phase is used at every iteration.

Figure 6 shows a schematic diagram of all the phases of our

parallel relational algebra, including a new interning phase, in the

context of Slog’s fixed-point loop. There are five primary phases of

our system: intra-bucket communication, local RA computation, all-

to-all data exchange, interning, and materialization in appropriate

indices. Relations are partitioned across processes using a modified

double-hashing approach [99]. This involves partitioning relations

by a hash of their join-column values so that they can be efficiently

distributed to participating processes. The main insight behind this

approach is that for each tuple in the outer relation, all relevant

tuples in the inner relation must be hashed to the same bucket,

stored on the same MPI process or node, permitting joins to be

performed locally on each process. To handle any possible key-

skew (imbalance across keys) in the relations themselves, we also

hash the non-join columns to map the tuple to a sub-bucket. Each

unique bucket/sub-bucket pair is thenmapped to anMPI process. To

distribute subbuckets to managing processes, we use round-robin

mapping and have a mechanism to dynamically refine buckets

that accumulate large numbers of tuples into a greater number of

sub-buckets.

8

Intra-bucket Comm. and Local Join. Our double-hashing approach
to manage key-skew necessitates an intra-bucket communication

phase to co-locate matching tuples before the join: all sub-buckets

for the outer relation, 𝑅Δ, are transmitted to all other sub-buckets

(in the same bucket) temporarily for the join. During the local

computation phase, RA kernels (comprised of fused join, selection,

projection, and union) are executed in parallel across all processes.

All-to-all Comm. Output tuples generated from local joins may

each belong to an arbitrary bucket in the output relation, so a

non-uniform all-to-all communication phase shuffles the output

to their managing processes (preparing them for any subsequent

iterations). Materializing a tuple in an output relation involves

hashing on its join and non-join columns to find its bucket and sub-

bucket (respectively), and then transmitting it to the process that

maintains that bucket/sub-bucket. The overall scalability of the RA

backend relies on the scalability of the all-to-all inter-process data

exchange phase, but all-to-all is notoriously difficult to scale [60,

86, 95]—largely because of the quadratic nature of its workload. We

address this scaling issue by adopting recent advancements [37]

that optimize non-uniform all-to-all communication by extending

the log-time Bruck algorithm [15, 95, 97] for non-uniform all-to-all

workloads.

Deduplication, Interning, and Insertion. Once new tuples are re-

ceived, we perform the interning phase required to assign unique

first-class facts their unique identity. This first checks if the re-

ceived fact was already discovered; if not, then a new 64-bit intern

id is created and associated with the fact. This is done by reserving

the first 16 bits of the 64-bit ID for the relation ID, the next 16

bits for the bucket ID, and the remaining 32 bits for a unique fact

ID—generated on a per-process basis via simple bump-pointer allo-

cation. Critical to our approach, when facts are generated, they are

sent to the canonical index, so that fact-ID generation may happen

in parallel on each bucket, as each bucket performs local insertion

and deduplication into the canonical (master) index, without any

additional communication or synchronization required. Each fact

is then inserted into 𝑅new, and following the semi-naïve evaluation

approach, these newly generated facts form the input 𝑅Δ for the

following iteration of the fixed-point loop. This process continues

until a fixed point is reached.

5 APPLICATIONS AND EVALUATION

In this section, we elaborate upon several applications of Slog; we

directly evaluate the performance of Slog against several state-of-

the-art tools in the context of provenance and program analysis.

5.1 Eager Why-Provenance (Lineage)

In prior literature, why-provenance has been deemed useful but

eagerly computing it is considered too expensive because it re-

quires storing all possible derivations of a tuple. By contrast, the on-

demand approach calculates possible derivations for user-specified

tuples after the execution. For this reason, existing Datalog en-

gines compute why-provenance on-demand in a top-down fashion,

thwarting effective data parallelism. Slog’s parallel capabilities

prompt us to again investigate eager provenance evaluation.

We explore this by comparing the running time for eager lineage

calculation using Slog and three other Datalog engines: VLog,

Nemo, and RDFox [51, 72, 98]. For VLog, we use its Java version,

Rulewerk, which supports lineage computation via an existential

operator. Nemo is another engine, similar to VLog, but implemented

in Rust. RDFox is a high-performance commercial Datalog engine

that supports lineage computation via a built-in Skolem function.

These experiments were done on a machine with a 3.0Ghz 12-core

AMD 5945WX (Zen3 Chagall) with 128GB of memory. We ran each

experiment five times and report the mean; results are shown in

Table 1. We provide single-thread performance comparisons for

all engines, and for parallel RDFox and Slog, we also report the

running times when all cores on our test platform are utilized.

Table 1: Running Time (s): Eager why-provenance vs. Nemo,

Rulewerk (single threaded), RDFox; timeout (�) of one hour.

Query Dataset Nemo Vlog RDFox (threads) Slog (threads)

(Rust) (Java) 1 12 1 12

G
a
l
e
n 15 1.63 7.38 0.20 0.14 0.68 0.13

25 2.35 17.7 0.33 0.19 0.92 0.17

50 34.5 415 2.30 1.98 12.0 2.19

C
S
D
A

httpd 72.2 152 57.9 40.7 127 22

linux 548 � 315 230 6,237 116

postgres 234 � 138 95.2 320 62.6

A
n
d
e
r
s
e
n 10,000 1.38 3.94 1.08 0.61 1.21 0.19

50,000 7.70 22.6 6.43 3.04 7.84 0.94

100,000 16.5 42.3 13.7 6.78 21.7 2.28

500,000 119 386 78.8 30.4 144 14.6

T
C

SF.cedge 439 296 443 291 628 183

wiki-vote 235 1372 391 337 485 91

Gnutella04 376 � 441 321 725 124

The first column of the table shows four selected Datalog queries.

Galen is a Datalog version of the EL ontology [56] using the ELK

calculus. The three datasets used in this query are ontologies found

in the Oxford Library. CSDA is a context-sensitive null-pointer

analysis. The three datasets here are collected from real-world

applications by the authors of a static analysis tool called Gras-

pan [101]. Andersen is a directed (Andersen-style) points-to flow

analysis—the datasets for this query are extracted from synthesized

program control-flow graphs with edge counts ranging from 10k–

500k. Lastly, TC refers to a transitive closure query running on

three real-world graphs from the SuiteSparse collection [33].

Columns 3, 4, 5, and 8 compare the single-core performance of

all four engines. Overall, Slog demonstrates similar single-core

performance to the Rust-based Datalog engine Nemo but is slower

than RDFox. In the Galen query tests, Slog consistently outper-

forms Nemo, though it is slower in other benchmarks. The slowest

performance for Slog is observed with the CSDA postgres dataset,
where it takes 1.34× longer than Nemo. On average, Slog is 2×
slower than RDFox in single-core performance. Despite this, Slog,

along with Nemo and RDFox, consistently outperforms VLog across

all test cases. The slowdown of single-threaded Slog in the CSDA

and Andersen queries, which involve higher memory usage than

the Galen queries, is likely due to the overhead of maintaining

MPI buffers, necessary for multi-core execution. However, with 12

9

threads, these parallel MPI facilities become worthy, making Slog

the fastest engine overall when fully utilizing multi-core.

Columns 6 and 8 show the running times of RDFox and Slog

with 12 threads. Leveraging data-parallelism, both engines signifi-

cantly outperform the single-thread engines in all test cases when

running with 12 threads. At full utilization of 12 cores, Slog sur-

passes RDFox in performance when compared at the same core

counts. Compared to single-process Slog, multi-process execution

provides an average 6× speedup, while 12-thread execution only

yields a 1.5× improvement. This indicates that Slog has better scal-

ability and still has potential for further scaling with higher core

counts, whereas RDFox’s scalability appears to saturate at 12 cores.

We also benchmarked a tool that constructs on-demand why-

provenance using a combination of Answer Set Programming (ASP)

and SAT solvers [19]. We attempted to run it in parallel to demand

the why-provenance of all tuples in the output to simulate eager

provenance; we found that the SAT solver sometimes gets stuck on

lineage for certain tuples, and was not comparable with the other

tools due to the inability to reuse work.

5.2 Evaluating CFA: Slog facts vs. Soufflé ADTs

We have implemented the control-flow analysis from Figure 4 in

both Soufflé and Slog, and have compared their runtimes at both 8

and 64 processes on a large cloud server (with 64 physical cores)

on various large synthetic benchmarks; we evaluate both 𝑘-CFA

(exponential) and𝑚-CFA (polynomial), two forms of call sensitivity.

We report our results in Table 2. Each of six distinct analysis choices

is shown along the left side of the table. Along rows of the table, we

show experiments for a specific combination of analysis, precision,

and term size. We detail the total number of iterations taken by

the Slog backend, along with control-flow points, store size, and

runtime at both 8 and 64 threads for Slog and Soufflé. Times are

reported in minutes / seconds form; several runs of Soufflé took

under 1 second (which we mark with <0:01); � indicates timeout

(over four hours).

Inspecting our results, we observed several broad trends. First,

as problem size increases, Slog’s runtime grows less-rapidly than

Soufflé’s. This point may be observed by inspecting runtimes for

a specific set of experiments. For example, 10-𝑚-CFA with term

size 200 took Slog 26 seconds, while Soufflé’s run took 56 sec-

onds. Doubling the term size to 400 takes 104 seconds in Slog, but

398 seconds in Soufflé—a slowdown of 4× in Slog, compared to a

slowdown of 7× in Soufflé. A similar trend happens in many other

experiments, e.g., 15 minutes to over three hours for Soufflé (13×
slowdown) vs. 2 to 4 seconds (2× slowdown) in Slog’s runtime on

5-𝑘-CFA. Inspecting the output of Soufflé’s compiled C++ code for
each experiment helped us identify the source of the slowdown. For

example, the rule for returning a value to a continuation address

$KAddr(e,env), in Figure 4, must join a return state using this

address with an entry in the continuation store for this address.

Consider the rule and its compiled C++ code shown in Figure 7.

Note that it uses two nested for loops to iterate over the entire

ret relation, then iterate over the entire kont_map relation, and

finally check if there is a match, for every combination. In this way,

Soufflé’s lack of indices for structured values leaves it no other

choice but to materialize (in time, not space) the entire Cartesian

Table 2: Control-Flow Analysis: Slog vs. Soufflé (ADTs)

Size Iters Cf. Pts Sto. Sz.

8 Processes 64 Processes

Slog Soufflé Slog Soufflé

3
-
𝑘
-
C
F
A

8 1,193 98.1k 23.4k 0:01 1:07 0:02 00:15

9 1,312 371.0k 79.9k 0:02 14:47 0:03 02:56

10 1,431 1.44M 291.3k 0:06 � 0:05 45:49

11 1,550 5.68M 1.11M 0:27 � 0:16 �

12 1,669 22.5M 4.32M 2:14 � 1:07 �

13 1,788 89.8M 17.0M 12:17 � 5:08 �

4
-
𝑘
-
C
F
A

9 1,363 311.8k 65.4k 0:01 14:38 0:03 02:08

10 1,482 1.20M 229.6k 0:05 � 0:05 40:30

11 1,601 4.69M 853.5k 0:20 � 0:13 �

12 1,720 18.6M 3.28M 1:40 � 0:53 �

13 1,839 73.8M 12.9M 8:44 � 3:58 �

14 1,958 294.4M 50.9M 1:00:53 � 35:46 �

5
-
𝑘
-
C
F
A

9 1,429 203.7k 50.7k 0:02 05:30 0:03 1:15

10 1,548 756.9k 167.3k 0:04 65:20 0:04 15:08

11 1,667 2.91M 597.5k 0:13 � 0:08 3:16:06

12 1,786 11.4M 2.25M 0:56 � 0:27 �

13 1,905 45.2M 8.69M 4:38 � 2:00 �

14 2,024 179.9M 34.2M 25:14 � 9:58 �

1
0
-
𝑚
-
C
F
A

50 6,120 21.0k 656.8k 0:02 0:02 00:10 0:01

100 11,670 42.9k 2.78M 0:07 0:09 00:20 0:04

200 22,770 86.6k 11.4M 0:26 0:56 00:42 0:23

400 44,970 174.0k 46.4M 1:44 6:26 01:38 1:56

800 89,370 348.8k 187.0M 7:35 45:22 04:21 9:33

1600 178,170 698.4k 750.1M 32:56 � 14:36 1:02:35

1
2
-
𝑚
-
C
F
A

25 3,559 17.1k 385.3k 0:01 <0:01 0:06 <0:01

50 6,434 36.3k 1.89M 0:04 0:03 0:11 0:03

100 12,184 74.6k 8.28M 0:16 00:24 0:23 0:10

200 23,684 151.3k 34.7M 01:10 02:37 0:53 0:55

400 46,684 304.7k 141.9M 05:04 18:39 2:23 4:12

800 92,684 611.5k 573.8M 22:46 2:38:22 7:28 24:58

1
5
-
𝑚
-
C
F
A

12 2,211 14.5k 136.7k 0:01 <0:01 0:04 <0:01

24 3,591 35.9k 1.44M 0:03 0:02 0:06 0:01

48 6,351 78.6k 8.29M 0:14 0:15 0:14 0:07

96 11,871 164.2k 38.9M 01:08 01:41 0:36 0:36

192 22,911 335.4k 168.0M 05:15 12:10 1:49 2:51

384 44,991 678k 697M 24:10 1:32:35 6:45 16:32

product as it checks for matches—rather than efficiently selecting

tuples via an index as would be typical for top-level relations.

For a fixed problem size, we found that Soufflé and Slog both

scaled fairly well. Soufflé consistently performed well on small

input sizes; additional processes did not incur slowdowns, and

Soufflé’s efficiency was generally reasonable (roughly 50%) when

algorithmic scalability did not incur slowdowns. For example, in 3-

𝑘-CFA (n=8), Soufflé took 67 seconds at 8 processes, and 15 seconds

// ret(av, k) :- ret(av, $KAddr(e, env)), kont_map($KAddr(e, env), k).
// env0[0] ---^ env2[0]-^ ^--- env2[1] env3[1] -----^
if(!(rel_13_delta_ret->empty()) && !(rel_18_kont_map->empty())) {
for(const auto& env0 : *rel_13_delta_ret) {
RamDomain const ref = env0[1];
if (ref == 0) continue;
const RamDomain *env1 = recordTable.unpack(ref,2);
{
if((ramBitCast<RamDomain>(env1[0]) == ramBitCast<RamDomain>(RamSigned(3)))) {
RamDomain const ref = env1[1];
if (ref == 0) continue;
const RamDomain *env2 = recordTable.unpack(ref,2);
{
for(const auto& env3 : *rel_18_kont_map) {

// On this line we've ommitted bitcasts and Tuple ctors:

if(!(rel_19_delta_kont_map->contains({{ {{env2[0],env2[1]}}, env3[1]}}))
&& !(rel_12_ret->contains({{env0[0], env3[1]}}))) {

// Omitted: null checks and insertion of env0[0], env3[1] into ret

}}}}}}}}}}

Figure 7: Example C++ code generated by Soufflé.

10

Figure 8: Scaling CSPA (of Linux) on Theta.

at 64 processes. Slog’s parallelism doesn’t outweigh communi-

cation overhead on smaller problems, particularly on problems

with high iteration count and low per-iteration work. As problem

size increases, our Slog implementations show healthy scalabil-

ity; efficiency grows as problem size grows (e.g., 24:10 to 6:45 on

15-𝑚-CFA/384, 22:46 to 7:28 on 12-𝑚-CFA/800).

We found that extracting optimal efficiency from Slogwas facili-

tated by increasing per-iteration work and avoiding long sequences

of sequential work with comparatively lower throughput; we be-

lieve this is because of the synchronization required to perform

deduplication. As an example of this principle, our 10-𝑚-CFA uses

a flat ctx fact to represent the context; a previous version used a

linked list 10 elements deep, however this design achieved poorer

scaling efficiency due to these 10-iteration-long sequences of work

necessary to extend the instrumentation at each call-site. In our

experiments scaling efficiency improved as polyvariance increased;

e.g., improving by 2× for 10-𝑚-CFA, but 3.5× for 15-𝑚-CFA. We

believe this is because of the higher per-iteration work available.

5.3 Scaling CSPA on the Theta Supercomputer

The performance differences we have just observed are primarily

due to the Slog’s asymptotic benefits in compiling rules that ma-

nipulate algebraic data. It is also reasonable to ask whether Slog’s

data parallelism enables sufficient absolute performance in useful

applications. To measure this, we transliterated (from [38]) a 10-

rule vanilla-Datalog implementation of Context-Sensitive Points-to

Analysis (CSPA) to run using Slog. We evaluated our implemen-

tation using several large-scale test programs from Graspan [101],

including httpd, postgres, and linux (a Linux kernel without

modules). We compiled our Slog version of CSPA to run using

MPI and ran the resulting program at a variety of scales (from 16–

2,048 processes) on the Theta Supercomputer [79] at the Argonne

Leadership Computing Facility (ALCF) of the Argonne National

Laboratory. Theta is a Cray machine with a peak performance of

11.69 petaflops. It is based on the second-generation Intel Xeon

Phi processor and is made up of 281,088 compute cores. Theta has

843.264 TiB of DDR4 RAM, 70.272 TiB of MCDRAM, 10 PiB of

storage, and a Dragonfly network topology.

Figure 8 shows the result of our strong-scaling runs for CSPA

of Linux (using Graspan’s data). Overall, we achieve near-perfect

scalability up to around 512 processes where we observe a per-

formance improvement commensurate to change in scale. After

512 processes, scalability starts to decline owing to an increase in

data movement costs and workload starvation. This trend is typical

of HPC applications, which typically have a range of processes

for which we observe optimal scalability. While we could not run

Soufflé on Theta, we observed roughly similar runtimes (around

150s for both Slog and Soufflé) for this experiment at 16 threads

on a large Unified Memory Access (UMA) server. We see this re-

sult as a promising indicator of the potential for Slog to achieve

high throughput, but it is worth noting that our data set (from

Graspan) achieves context sensitivity via method cloning and thus

provides a large amount of available parallel work. In our future

work, we aim to use Slog to develop rich, context-sensitive analyses

of fully-featured languages.

6 RELATEDWORK AND LIMITATIONS

We now categorize several recent threads of related-work apropos

our efforts. Along the way, we highlight limitations of our current

implementation of Slog and discuss some plans for future work.

Datalog∃ and The Chase. OurDL∃! is a restriction of Datalog∃ , a
well-known extension of Datalog, which allows arbitrary existential

existential quantification in the heads of rules [1]. Datalog
∃
is

particularly popular in the field of knowledge representation and

reasoning (KRR), where it enables tractable query answering over

ontologies [8]. As a result, many Datalog-based reasoners include

this extension. However, existential queries are computationally

expensive to compute and can also lead to undecidable queries. To

address this, constrained versions of Datalog, such as those in the

Datalog
±
family [20], are used to ensure decidability. These dialects

employ various constraints, like those in the Graal reasoner [7] and

the Shy system in the i-DLV [63].

Existentially quantified conjunctive queries create tuple gener-

ating dependencies (TGDs) between the head and body clauses

of a Datalog
∃
rule. To resolve these dependencies, variants of the

well-known database algorithm, the Chase [64], are used. One com-

plete version is the oblivious chase [12], which explores all possible

choices for the existentially quantified meta variables. However,

this approach leads to significant non-termination issues, making

it impractical for mainstream Datalog
∃
implementations. Instead,

these engines often adopt algorithms with stronger termination

guarantees, such as the restricted chase [21] and the parsimonious
chase [63].

Semirings and provenance. The highly influential work of prove-

nance semirings extends Datalog with 𝐾-relations, wherein every

Datalog fact is labeled with a value from a semiring [47]. DL∃! is
orthogonal to provenance semirings. In general, wile DL∃! does
allow annotating tuples with arbitrary structured values, DL∃!
does not equate tuples modulo the semiring laws, instead equating

facts via their Skolem term. Thus, while DL∃! does allow encod-

ing provenance semirings (e.g., ·(+(...), ...)), the need to materialize

distinct Skolem terms (for identical semiring values) leads to encod-

ing overhead. However, unlike provenance semirings, DL∃! does
allow observing the tuple’s identity: while provenance semirings

11

forbid introspecting upon tuple tags in the Datalog program,DL∃!
enables matching on structured facts to drive computation.

Aside from provenance semirings, there has been significant

interest in the application of provenance for a variety of applica-

tions, including data warehousing [31], debugging Datalog [107],

explainable AI [22, 35, 39], and program analysis [25]. Provenance

has seen particular recent interest in explainable AI; our compar-

ison systems Rulewerk and Nemo [34, 51] are representatives of

this work, supporting why-provenance via an existential operator.

Recent research leverages Answer Set Programming (ASP) and SAT

solvers forwhy-provenance [19]. However, all the above approaches

take an on-demand approach to computing why provenance, deem-

ing eager materialization as unnecessary or overly expensive. By

contrast,DL∃! focuses on ubiquitous, eager materialization of tree-

shaped facts; our high-performance, data-parallel RA kernels (§ 4.1)

enable representing provenance in a compact, distributed fashion.

Equality in Datalog. Equality-generating dependencies (EGDs)
are an extension of Datalog that allow the equality operator (=)

to appear in the head clauses of rules. This extension has become

favored in Datalog due to its ability to facilitate new realms of ap-

plication, such as financial data analysis [9] and program equality

saturation [104]. One way to enable EGD reasoning is by stor-

ing Datalog relations in specialized union-find-like data structures

called equality graphs (e-graphs). Of particular note is Egglog [106],

which allows programming with equality sets backed by a lazy-

building e-graph implementation called egg. Though techniques

like lazy-building can be used to accelerate computation, full EGD

chasing is still expensive. Thus, some Datalog engines, such as

Vadalog, choose to use a stratified EGD semantics called harmless
EGD [11], which avoids the values generated in EGD ruless from

being further used to trigger the activation of other rules. We view

Slog as complementary to Egglog, with similar but diverging goals

and substantive differences: Slog does not support equality sets,

though it is possible to materialize an equivalence relation (either

lazily or eagerly) for bounded observations. Additionally, Slog’s

compilation to high-performance, data-parallel kernels differenti-

ates it from Egglog, which instead employs lazy rebuilding. Our

subjective experience comparing Slog with Egglog is that Slog

is faster in applications where materialization-overhead is not a

bottleneck. We plan to study the synthesis of Slog and e-graphs as

future work.

Incremental Datalog. A significant amount of recent interest fo-

cuses on incremental Datalog, extending Datalog’s semi-naïve eval-

uation strategy to interesting domains [2, 16, 66, 73], especially fo-

cusing on generalizing Datalog’s semantics in ways in which are in-

cremental by design. Relevant systems include timely dataflow [73],

RDFox [74], and DBSP [16]. Compared to these systems,DL∃! does
not support negation or an inverse operator for elements ofV and

S, instead preferring to be obviously-monotonic by construction.

While DL∃! and Slog do use semi-naïve evaluation, they do not

expose the engine’s data structures in a stream-based manner. We

leave to further study the connection between Slog with differen-

tial dataflow; we expect it is possible to compileDL∃! to DBSP, but
note that our current backend is built on MPI and has the potential

to leverage technologies such as InfiniBand.

Distributed Datalog. There have been significant efforts to scale

Datalog-like languages to large clusters of machines. For example,

RDFox [74], BigDatalog [91], Distributed SociaLite [87], Myria [49],

and Radlog [48] all run on Apache Spark clusters. Slog differs

from these systems in two primary ways. First, compared to Slog’s

MPI-based implementation, Apache Spark’s framework-imposed

overhead is increasingly understood to be a bottleneck in scalable

data analytics applications, with several authors noting order-of-

magnitude improvements when switching from Spark to MPI [4, 59,

83]. Second, none of the aforementioned systems support first-class

facts. We elide detailed comparison against these systems due to

space; we found Slog was faster and more scalable than Radlog,

BigDatalog, and similar systems in our limited explorations.

7 CONCLUSION

We presented DL∃!, a Datalog with first-class facts. In DL∃!, facts
are identified by a symbolic representation in the form of a Skolem

term. This methodology extends Datalog with the ability to intro-

spect upon, compute with, and construct new fact identities. We

rigorously define a semantics of DL∃!, presenting its semantics as

a variant of the restricted chase which materializes Skolem terms,

essentially giving facts an algebraic identity. The fact that rule

heads cannot be unified with the body forbids the construction of

cyclic facts, and thus yields a semi-decidable semantics amenable

to bottom-up implementation via a simple extension of modern-

generation Datalog engines. Our higher-level languageDLS offers

an ergonomic syntax, enabling a more direct transliteration of

functional programs and natural-deduction-style rules into DL∃!.
We defined DLS via a syntax-directed translation into DL∃!, and
showed its model-theoretic and fixpoint-based semantics, formally

the equivalence of these semantics in Isabelle/HOL.

In our implementation, we generalize DL∃! to full-fledged en-

gine, Slog, in which we have implemented a wide breadth of ap-

plications, including various forms of provenance (§5.1) and struc-

tural abstract interpretation (§3.5). Slog exploits the uniqueness

properties of DL∃! to ensure a massively-parallel implementation

which materializes first-class facts using a communication-avoiding

strategy which yields highly-scalable implementations in practice,

compounding the algorithmic benefits of DL∃!. Our experiments

speak to the promise of our approach: Slog beats all other com-

parison engines in our benchmarks when run at sufficient scale,

and our strong-scaling runs (context-sensitive points-to analysis

of Linux, §5.3) show satisfactory scalability up to 1k cores. Slog is

available at:

https://github.com/harp-lab/slog-lang1

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases:
the logical level. Addison-Wesley Longman Publishing Co., Inc.

[2] Mario Alvarez-Picallo, Alex Eyers-Taylor, Michael Peyton Jones, and C.-H. Luke

Ong. 2019. Fixing Incremental Computation. In Programming Languages and
Systems, Luís Caires (Ed.). Springer International Publishing, Cham, 525–552.

[3] Nada Amin and Tiark Rompf. 2017. Collapsing towers of interpreters. Proceed-
ings of the ACM on Programming Languages 2, POPL (2017), 1–33.

[4] Michael Anderson, Shaden Smith, Narayanan Sundaram, Mihai Capotă,

Zheguang Zhao, Subramanya Dulloor, Nadathur Satish, and Theodore L. Willke.

2017. Bridging the Gap between HPC and Big Data Frameworks. Proc. VLDB
Endow. 10, 8 (apr 2017), 901–912. https://doi.org/10.14778/3090163.3090168

12

https://github.com/harp-lab/slog-lang1
https://doi.org/10.14778/3090163.3090168

[5] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. 2017.

Porting DOOP to soufflé: a tale of inter-engine portability for datalog-based

analyses. In Proceedings of the 6th ACM SIGPLAN International Workshop on
State Of the Art in Program Analysis. ACM, 25–30.

[6] Molham Aref, Balder Ten Cate, Todd J Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L Veldhuizen, and Geoffrey Washburn. 2015. Design and im-

plementation of the LogicBlox system. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 1371–1382.

[7] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A toolkit for query answering with existential

rules. In Rule Technologies: Foundations, Tools, and Applications: 9th International
Symposium, RuleML 2015, Berlin, Germany, August 2-5, 2015, Proceedings 9.
Springer, 328–344.

[8] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. 2011.

On rules with existential variables: Walking the decidability line. Artificial
Intelligence 175, 9-10 (2011), 1620–1654.

[9] Teodoro Baldazzi, Luigi Bellomarini, and Emanuel Sallinger. 2023. Rea-

soning over Financial Scenarios with the Vadalog System. In # PLACE-
HOLDER_PARENT_METADATA_VALUE#, Vol. 26. OpenProceedings. org, 782–
791.

[10] Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, and Emanuel Sallinger.

2022. Exploiting the Power of Equality-Generating Dependencies in Ontological

Reasoning. Proc. VLDB Endow. 15, 13 (Sept. 2022), 3976–3988. https://doi.org/

10.14778/3565838.3565850

[11] Luigi Bellomarini, Davide Benedetto, Matteo Brandetti, and Emanuel Sallinger.

2022. Exploiting the power of equality-generating dependencies in ontological

reasoning. Proceedings of the VLDB Endowment 15, 13 (2022), 3976–3988.
[12] Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. 2016.

Guarded-based disjunctive tuple-generating dependencies. ACM Transactions
on Database Systems (TODS) 41, 4 (2016), 1–45.

[13] Katharina Brandl, Sebastian Erdweg, Sven Keidel, and Nils Hansen. 2023. Modu-

lar Abstract Definitional Interpreters for WebAssembly. In European Conference
on Object-Oriented Programming (ECOOP 2023).

[14] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative spec-

ification of sophisticated points-to analyses. In Proceedings of the 24th ACM
SIGPLAN conference on Object oriented programming systems languages and
applications (Orlando, Florida, USA) (OOPSLA ’09). ACM, New York, NY, USA,

243–262. https://doi.org/10.1145/1640089.1640108

[15] J. Bruck, , S. Kipnis, E. Upfal, and D. Weathersby. 1997. Efficient algorithms

for all-to-all communications in multiport message-passing systems. IEEE
Transactions on Parallel and Distributed Systems 8, 11 (Nov 1997), 1143–1156.

https://doi.org/10.1109/71.642949

[16] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val Tannen. 2023.

DBSP: Automatic Incremental View Maintenance for Rich Query Languages.

Proc. VLDB Endow. 16, 7 (mar 2023), 1601–1614. https://doi.org/10.14778/

3587136.3587137

[17] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where:

A characterization of data provenance. In Database Theory—ICDT 2001: 8th
International Conference London, UK, January 4–6, 2001 Proceedings 8. Springer,
316–330.

[18] Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. 2024. The

Complexity of Why-Provenance for Datalog Queries. Proc. ACM Manag. Data
2, 2, Article 83 (may 2024), 16 pages. https://doi.org/10.1145/3651146

[19] Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. 2024.

Computing the Why-Provenance for Datalog Queries via SAT Solvers. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Vol. 38. 10459–10466.

[20] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A general datalog-

based framework for tractable query answering over ontologies. In Proceedings
of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. 77–86.

[21] David Carral, Irina Dragoste, and Markus Krötzsch. 2017. Restricted Chase

(Non) Termination for Existential Rules with Disjunctions.. In IJCAI. 922–928.
[22] David Carral, Irina Dragoste, Markus Krötzsch, and Christian Lewe. 2019. Chas-

ing sets: how to use existential rules for expressive reasoning. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence (Macao, China)

(IJCAI’19). AAAI Press, 1624–1631.
[23] David Carral, Irina Dragoste, and Markus Krötzsch. 2017. Restricted Chase

(Non)Termination for Existential Rules with Disjunctions. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17.
922–928. https://doi.org/10.24963/ijcai.2017/128

[24] Stefano Ceri, Georg Gottlob, Letizia Tanca, et al. 1989. What you always wanted

to know about Datalog(and never dared to ask). IEEE transactions on knowledge
and data engineering 1, 1 (1989), 146–166.

[25] James Cheney, Laura Chiticariu, Wang-Chiew Tan, et al. 2009. Provenance in

databases: Why, how, and where. Foundations and Trends® in Databases 1, 4
(2009), 379–474.

[26] Cognitect, Inc. [n.d.]. Datomic: A Distributed Deductive Database in Clojure.

https://www.datomic.com/. accessed: 9-22-2024.

[27] Patrick Cousot. 1996. Abstract interpretation. ACM Computing Surveys (CSUR)
28, 2 (1996), 324–328.

[28] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

LatticeModel for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (Los Angeles, California) (POPL ’77). ACM,

New York, NY, USA, 238–252. https://doi.org/10.1145/512950.512973

[29] Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis

frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages. 269–282.

[30] Yingwei Cui and Jennifer Widom. 2000. Lineage tracing in a data warehousing

system. In Proceedings of 16th International Conference on Data Engineering (Cat.
No. 00CB37073). IEEE, 683–684.

[31] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. 2000. Tracing the lineage

of view data in a warehousing environment. ACM Trans. Database Syst. 25, 2
(jun 2000), 179–227. https://doi.org/10.1145/357775.357777

[32] David Darais, Nicholas Labich, Phúc C Nguyen, and David Van Horn. 2017.

Abstracting definitional interpreters (functional pearl). Proceedings of the ACM
on Programming Languages 1, ICFP (2017), 1–25.

[33] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (dec 2011), 25 pages. https:

//doi.org/10.1145/2049662.2049663

[34] Ali Elhalawati, Markus Krötzsch, and Stephan Mennicke. 2022. An existential

rule framework for computing why-provenance on-demand for datalog. In

International Joint Conference on Rules and Reasoning. Springer, 146–163.
[35] Agneta Eriksson and Anna-Lena Johansson. 1985. Neat explanation of proof trees.

Uppsala University, Computing Science Department, Uppsala Programming

[36] Javier Esparza, Michael Luttenberger, and Maximilian Schlund. 2015. Fpsolve:

A generic solver for fixpoint equations over semirings. International Journal of
Foundations of Computer Science 26, 07 (2015), 805–825.

[37] Ke Fan, Thomas Gilray, Valerio Pascucci, Xuan Huang, Kristopher Micinski,

and Sidharth Kumar. 2022. Optimizing the Bruck Algorithm for Non-Uniform

All-to-All Communication. In Proceedings of the 31st International Symposium
on High-Performance Parallel and Distributed Computing (Minneapolis, MN,

USA) (HPDC ’22). Association for Computing Machinery, New York, NY, USA,

172–184. https://doi.org/10.1145/3502181.3531468

[38] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos Koutris,

and Jignesh Patel. 2018. Scaling-up in-memory datalog processing: Observations

and techniques. arXiv preprint arXiv:1812.03975 (2018).
[39] Gérard Ferrand, Willy Lesaint, and Alexandre Tessier. 2005. Explanations and

proof trees. In International Symposium on Explanation-Aware Computing, ExaCt
2005. AAAI Press, 76–85.

[40] Message P Forum. 1994. MPI: A message-passing interface standard.

[41] Kimball Germane and Michael D Adams. 2020. Liberate Abstract Garbage

Collection from the Stack by Decomposing the Heap. In European Symposium
on Programming. Springer, Cham, 197–223.

[42] Kimball Germane and Jay McCarthy. 2021. Newly-single and loving it: improv-

ing higher-order must-alias analysis with heap fragments. Proceedings of the
ACM on Programming Languages 5, ICFP (2021), 1–28.

[43] Thomas Gilray, Michael D. Adams, and Matthew Might. 2016. Allocation

Characterizes Polyvariance: A Unified Methodology for Polyvariant Control-

flow Analysis. In Proceedings of the 21st ACM SIGPLAN International Conference
on Functional Programming (Nara, Japan) (ICFP ’16). ACM, New York, NY, USA,

407–420. https://doi.org/10.1145/2951913.2951936

[44] Thomas Gilray and Sidharth Kumar. 2019. Distributed Relational Algebra at

Scale. In 2019 IEEE 26th International Conference on High Performance Computing,
Data, and Analytics (HiPC). 12–22. https://doi.org/10.1109/HiPC.2019.00014

[45] Thomas Gilray, Sidharth Kumar, and Kristopher Micinski. 2021. Compiling

Data-Parallel Datalog. In Proceedings of the 30th ACM SIGPLAN International
Conference on Compiler Construction (Virtual, Republic of Korea) (CC 2021).
Association for Computing Machinery, New York, NY, USA, 23–35. https:

//doi.org/10.1145/3446804.3446855

[46] Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David

Van Horn. 2016. Pushdown Control-flow Analysis for Free. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (St. Petersburg, FL, USA) (POPL ’16). ACM, New York, NY, USA,

691–704. https://doi.org/10.1145/2837614.2837631

[47] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance

semirings. In Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (, Beijing, China,) (PODS ’07).
Association for Computing Machinery, New York, NY, USA, 31–40. https:

//doi.org/10.1145/1265530.1265535

[48] Jiaqi Gu, Yugo H Watanabe, William A Mazza, Alexander Shkapsky, Mohan

Yang, Ling Ding, and Carlo Zaniolo. 2019. RaSQL: Greater power and per-

formance for big data analytics with recursive-aggregate-SQL on Spark. In

Proceedings of the 2019 International Conference on Management of Data (Am-

sterdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery,

New York, NY, USA, 467–484. https://doi.org/10.1145/3299869.3324959

13

https://doi.org/10.14778/3565838.3565850
https://doi.org/10.14778/3565838.3565850
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1109/71.642949
https://doi.org/10.14778/3587136.3587137
https://doi.org/10.14778/3587136.3587137
https://doi.org/10.1145/3651146
https://doi.org/10.24963/ijcai.2017/128
https://www.datomic.com/
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/357775.357777
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/3502181.3531468
https://doi.org/10.1145/2951913.2951936
https://doi.org/10.1109/HiPC.2019.00014
https://doi.org/10.1145/3446804.3446855
https://doi.org/10.1145/3446804.3446855
https://doi.org/10.1145/2837614.2837631
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1145/3299869.3324959

[49] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu,

Paraschos Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk,

Jingjing Wang, Andrew Whitaker, Shengliang Xu, Magdalena Balazinska, Bill

Howe, and Dan Suciu. 2014. Demonstration of the Myria Big Data Manage-

ment Service. In Proceedings of the 2014 ACM SIGMOD International Con-
ference on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). As-
sociation for Computing Machinery, New York, NY, USA, 881–884. https:

//doi.org/10.1145/2588555.2594530

[50] Matthew Hennessy. 1990. The semantics of programming languages: an elemen-
tary introduction using structural operational semantics. John Wiley & Sons,

Inc.

[51] Alex Ivliev, Stefan Ellmauthaler, Lukas Gerlach, Maximilian Marx, Matthias

Meißner, Simon Meusel, and Markus Krötzsch. 2023. Nemo: First glimpse of a

new rule engine. arXiv preprint arXiv:2308.15897 (2023).

[52] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis

of program analyzers. In Computer Aided Verification: 28th International Con-
ference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28,
Swarat Chaudhuri and Azadeh Farzan (Eds.). Springer, Springer International

Publishing, Cham, 422–430.

[53] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019. Brie: A

specialized trie for concurrent datalog. In Proceedings of the 10th International
Workshop on Programming Models and Applications for Multicores and Manycores
(Washington, DC, USA) (PMAM’19). ACM, New York, NY, USA, 31–40.

[54] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. 2019. A

specialized B-tree for concurrent datalog evaluation. In Proceedings of the 24th
symposium on principles and practice of parallel programming (Washington,

District of Columbia) (PPoPP ’19). ACM, New York, NY, USA, 327–339.

[55] Gilles Kahn. 1987. Natural semantics. InAnnual symposium on theoretical aspects
of computer science. Springer, 22–39.

[56] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. 2014. The Incredi-

ble ELK: From Polynomial Procedures to Efficient Reasoning with EL Ontologies.

Journal of automated reasoning 53, 1 (2014), 1–61.

[57] Andrew W. Keep and R. Kent Dybvig. 2013. A Nanopass Framework for Com-

mercial Compiler Development. In Proceedings of the 18th ACM SIGPLAN Inter-
national Conference on Functional Programming (Boston, Massachusetts, USA)

(ICFP ’13). Association for Computing Machinery, New York, NY, USA, 343–350.

https://doi.org/10.1145/2500365.2500618

[58] Jean-Louis Krivine. 2007. A call-by-name lambda-calculus machine. Higher-
order and symbolic computation 20, 3 (2007), 199–207.

[59] Deepa S Kumar and M Abdul Rahman. 2017. Performance Evaluation of Apache

Spark Vs MPI: A Practical Case Study on Twitter Sentiment Analysis. Journal
of Computer Science 13, 12 (Dec 2017), 781–794. https://doi.org/10.3844/jcssp.

2017.781.794

[60] R. Kumar, A. Mamidala, and D. K. Panda. 2008. Scaling alltoall collective

on multi-core systems. In 2008 IEEE International Symposium on Parallel and
Distributed Processing. 1–8.

[61] Sidharth Kumar, Cameron Christensen, JohnA. Schmidt, Peer-Timo Bremer,

Eric Brugger, Venkatram Vishwanath, Philip Carns, Hemanth Kolla, Ray Grout,

Jacqueline Chen, Martin Berzins, Giorgio Scorzelli, and Valerio Pascucci. 2014.

Fast Multiresolution Reads of Massive Simulation Datasets. In Supercomputing,
JulianMartin Kunkel, Thomas Ludwig, and HansWerner Meuer (Eds.). Lecture

Notes in Computer Science, Vol. 8488. Springer International Publishing, 314–

330. https://doi.org/10.1007/978-3-319-07518-1_20

[62] Sidharth Kumar and Thomas Gilray. 2020. Load-balancing parallel relational

algebra. In High Performance Computing: 35th International Conference, ISC High
Performance 2020, Frankfurt/Main, Germany, June 22–25, 2020, Proceedings 35.
Springer, 288–308.

[63] Nicola Leone, Marco Manna, Giorgio Terracina, and Pierfrancesco Veltri. 2012.

Efficiently computable Datalog
∃
programs. In Thirteenth international confer-

ence on the principles of knowledge representation and reasoning.
[64] David Maier, Alberto O Mendelzon, and Yehoshua Sagiv. 1979. Testing implica-

tions of data dependencies. ACM Transactions on Database Systems (TODS) 4, 4
(1979), 455–469.

[65] Per Martin-Löf. 1996. On the Meanings of the Logical Constants and the

Justifications of the Logical Laws. Nordic Journal of Philosophical Logic 1, 1
(1996), 11–60.

[66] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. 2013.

Differential dataflow.. In CIDR.
[67] Matthew Might. 2010. Abstract interpreters for free. In International Static

Analysis Symposium (SAS ’10). Springer, 407–421.
[68] Matthew Might and Panagiotis Manolios. 2009. A posteriori soundness for non-

deterministic abstract interpretations. In International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer, 260–274.

[69] Matthew Might and Olin Shivers. 2008. Exploiting reachability and cardinality

in higher-order flow analysis. Journal of Functional Programming 18, 5-6 (2008),

821–864.

[70] Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolving

and exploiting the k-CFA paradox: illuminating functional vs. object-oriented

program analysis. In Proceedings of the 31st ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. 305–315.

[71] Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. 2019. Maintenance

of datalog materialisations revisited. Artificial Intelligence 269 (2019), 76–136.
[72] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. 2014.

Parallel materialisation of datalog programs in centralised, main-memory RDF

systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 28.
[73] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455.

[74] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee.

2015. RDFox: A Highly-Scalable RDF Store. In The Semantic Web - ISWC 2015,
Marcelo Arenas, Oscar Corcho, Elena Simperl, Markus Strohmaier, Mathieu

d’Aquin, Kavitha Srinivas, Paul Groth, Michel Dumontier, Jeff Heflin, Krish-

naprasad Thirunarayan, and Steffen Staab (Eds.). Springer International Pub-

lishing, Cham, 3–20.

[75] Phuc C Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn.

2017. Soft contract verification for higher-order stateful programs. Proceedings
of the ACM on Programming Languages 2, POPL (2017), 51.

[76] André Pacak and Sebastian Erdweg. 2019. Generating incremental type services.

In Proceedings of the 12th ACM SIGPLAN International Conference on Software
Language Engineering (Athens, Greece) (SLE 2019). Association for Computing

Machinery, New York, NY, USA, 197–201. https://doi.org/10.1145/3357766.

3359534

[77] André Pacak and Sebastian Erdweg. 2022. Functional programming with Data-

log. In 36th European Conference on Object-Oriented Programming (ECOOP 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[78] André Pacak, Sebastian Erdweg, and Tamás Szabó. 2020. A systematic approach

to deriving incremental type checkers. Proc. ACM Program. Lang. 4, OOPSLA,
Article 127 (Nov. 2020), 28 pages. https://doi.org/10.1145/3428195

[79] Scott Parker, Vitali Morozov, Sudheer Chunduri, Kevin Harms, Chris Knight,

and Kalyan Kumaran. 2017. Early Evaluation of the Cray XC40 Xeon Phi System
‘Theta’at Argonne. Technical Report. Argonne National Lab.(ANL), Argonne, IL
(United States).

[80] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT

Press.

[81] Benjamin C. Pierce. 2004. Advanced Topics in Types and Programming Languages.
The MIT Press.

[82] Gordon D Plotkin. 1981. Structural operational semantics. Aarhus University,
Denmark (1981), 20–23.

[83] Jorge L. Reyes-Ortiz, Luca Oneto, and Davide Anguita. 2015. Big Data Analytics

in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf. Procedia Computer
Science 53 (2015), 121–130. https://doi.org/10.1016/j.procs.2015.07.286 INNS

Conference on Big Data 2015 Program San Francisco, CA, USA 8-10 August

2015.

[84] John C Reynolds. 1972. Definitional interpreters for higher-order programming

languages. In Proceedings of the ACM annual conference-Volume 2. 717–740.
[85] Arash Sahebolamri, Langston Barrett, Scott Moore, and Kristopher Micinski.

2023. Bring Your Own Data Structures to Datalog. Proc. ACM Program. Lang. 7,
OOPSLA2, Article 264 (oct 2023), 26 pages. https://doi.org/10.1145/3622840

[86] David S Scott. 1991. Efficient all-to-all communication patterns in hypercube

and mesh topologies. In The Sixth Distributed Memory Computing Conference,
1991. Proceedings. IEEE Computer Society, 398–399.

[87] Jiwon Seo, Stephen Guo, and Monica S Lam. 2013. SociaLite: Datalog extensions

for efficient social network analysis. In 2013 IEEE 29th International Conference
on Data Engineering (ICDE). IEEE, 278–289.

[88] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Distributed

Socialite: A Datalog-Based Language for Large-Scale Graph Analysis. Proc.
VLDB Endow. 6, 14 (sep 2013), 1906–1917. https://doi.org/10.14778/2556549.

2556572

[89] Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais,

Dave Clarke, and Frank Piessens. 2013. Monadic abstract interpreters. In Pro-
ceedings of the 34th ACM SIGPLAN conference on Programming language design
and implementation. 399–410.

[90] Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages. Ph.D.

Dissertation. Carnegie-Mellon University, Pittsburgh, PA.

[91] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson

Condie, and Carlo Zaniolo. 2016. Big Data Analytics with Datalog Queries on

Spark. In Proceedings of the 2016 International Conference on Management of
Data (San Francisco, California, USA) (SIGMOD ’16). Association for Computing

Machinery, New York, NY, USA, 1135–1149. https://doi.org/10.1145/2882903.

2915229

[92] Yihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Kristopher Micinski,

and Sidharth Kumar. 2023. GDlog: A GPU-Accelerated Deductive Engine.

arXiv:2311.02206 [cs.DB]

14

https://doi.org/10.1145/2588555.2594530
https://doi.org/10.1145/2588555.2594530
https://doi.org/10.1145/2500365.2500618
https://doi.org/10.3844/jcssp.2017.781.794
https://doi.org/10.3844/jcssp.2017.781.794
https://doi.org/10.1007/978-3-319-07518-1_20
https://doi.org/10.1145/3357766.3359534
https://doi.org/10.1145/3357766.3359534
https://doi.org/10.1145/3428195
https://doi.org/10.1016/j.procs.2015.07.286
https://doi.org/10.1145/3622840
https://doi.org/10.14778/2556549.2556572
https://doi.org/10.14778/2556549.2556572
https://doi.org/10.1145/2882903.2915229
https://doi.org/10.1145/2882903.2915229
https://arxiv.org/abs/2311.02206

[93] Robert Tarjan. 1972. Depth-first search and linear graph algorithms. SIAM
journal on computing 1, 2 (1972), 146–160.

[94] Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications.

Pacific journal of Mathematics 5, 2 (1955), 285–309.
[95] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of

Collective Communication Operations in MPICH. Int. J. High Perform. Comput.
Appl. 19, 1 (Feb. 2005), 49–66.

[96] Sam Tobin-Hochstadt and David Van Horn. 2012. Higher-order symbolic

execution via contracts. In Proceedings of the ACM international conference on
Object oriented programming systems languages and applications. 537–554.

[97] Jesper Larsson Träff, Antoine Rougier, and Sascha Hunold. 2014. Implementing

a classic: Zero-copy all-to-all communication withMPI datatypes. In Proceedings
of the 28th ACM international conference on Supercomputing. 135–144.

[98] Jacopo Urbani, Ceriel Jacobs, and Markus Krötzsch. 2016. Column-oriented

datalog materialization for large knowledge graphs. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 30.

[99] Patrick Valduriez and Setrag Khoshafian. 1988. Parallel Evaluation of the

Transitive Closure of a Database Relation. Int. J. Parallel Program. 17, 1 (Feb.
1988), 19–42.

[100] David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In

Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming (Baltimore, Maryland, USA) (ICFP ’10). ACM, New York, NY, USA,

51–62. https://doi.org/10.1145/1863543.1863553

[101] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Harry Xu, and Ardalan Amiri

Sani. 2017. Graspan: A Single-machine Disk-based Graph System for Inter-

procedural Static Analyses of Large-scale Systems Code. Proceedings of the
Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems (2017), 389–404. https://doi.org/10.

1145/3037697.3037744

[102] Guannan Wei, Yuxuan Chen, and Tiark Rompf. 2019. Staged abstract inter-

preters: Fast and modular whole-program analysis via meta-programming.

Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–32.

[103] Guannan Wei, James Decker, and Tiark Rompf. 2018. Refunctionalization of

abstract abstract machines: bridging the gap between abstract abstract machines

and abstract definitional interpreters (functional pearl). Proceedings of the ACM
on Programming Languages 2, ICFP (2018), 1–28.

[104] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary

Tatlock, and Pavel Panchekha. 2021. Egg: Fast and Extensible Equality Sat-

uration. Proc. ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages.

https://doi.org/10.1145/3434304

[105] Rohit Zambre, Damodar Sahasrabudhe, Hui Zhou, Martin Berzins, Aparna

Chandramowlishwaran, and Pavan Balaji. 2021. Logically Parallel Communi-

cation for Fast MPI+ Threads Applications. IEEE Transactions on Parallel and
Distributed Systems (2021).

[106] Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock. 2022.

Relational e-matching. Proc. ACM Program. Lang. 6, POPL, Article 35 (jan 2022),

22 pages. https://doi.org/10.1145/3498696

[107] C. Zhao, Z. Zhang, P. Xu, T. Zheng, and J. Guo. 2020. Kaleido: An Efficient

Out-of-core Graph Mining System on A Single Machine. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). 673–684.

15

https://doi.org/10.1145/1863543.1863553
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3498696

	Abstract
	1 Introduction
	2 Datalog with First-Class Facts
	2.1 DL! : its syntax and chase semantics
	2.2 From DL! to DLS
	2.3 Fixed-point Semantics
	2.4 Model-theoretic Semantics
	2.5 Equivalence

	3 Applications of First-Class Facts
	3.1 Datalog in DL! and DLS
	3.2 Provenance in DL!
	3.3 Algebraic data types
	3.4 Functional Programming
	3.5 Structural Abstract Interpretation
	3.6 Type Systems

	4 Slog: Implementing DLS
	4.1 MPI-based Data-parallel Implementation

	5 Applications and Evaluation
	5.1 Eager Why-Provenance (Lineage)
	5.2 Evaluating CFA: Slog facts vs. Soufflé ADTs
	5.3 Scaling CSPA on the Theta Supercomputer

	6 Related Work and Limitations
	7 Conclusion
	References

