
Optimizing Datalog for the GPU

Yihao Sun
ysun67@syr.edu

Syracuse University
Syracuse, New York, USA

Ahmedur Rahman Shovon
ashov@uic.edu

University of Illinois, Chicago
Chicago, Illinois, USA

Thomas Gilray
thomas.gilray@wsu.edu

Washington State University
Pullman, Washington, USA

Sidharth Kumar
sidharth@uic.edu

University of Illinois, Chicago
Chicago, Illinois, USA

Kristopher Micinski
kkmicins@syr.edu
Syracuse University

Syracuse, New York, USA

Abstract

Modern Datalog engines (e.g., LogicBlox, Soufflé, ddlog)
enable their users to write declarative queries which com-
pute recursive deductions over extensional facts, leaving
high-performance operationalization (query planning, semi-
naïve evaluation, and parallelization) to the engine. Such
engines form the backbone of modern high-throughput ap-
plications in static analysis, network monitoring, and social-
media mining. In this paper, we present a methodology
for implementing a modern in-memory Datalog engine on
data center GPUs, allowing us to achieve significant (up to
45×) gains compared to Soufflé (a modern CPU-based en-
gine) on context-sensitive points-to analysis of PostgreSQL.
We present GPUlog, a Datalog engine backend that imple-
ments iterated relational algebra kernels over a novel range-
indexed data structure we call the hash-indexed sorted ar-
ray (HISA). HISA combines the algorithmic benefits of in-
cremental range-indexed relations with the raw computa-
tion throughput of operations over dense data structures.
Our experiments show that GPUlog is significantly faster
than CPU-based Datalog engines while achieving a favorable
memory footprint compared to contemporary GPU-based
joins.

CCS Concepts: • Computing methodologies→ Parallel

programming languages.

Keywords: Datalog, GPU, Analytic Databases

ACM Reference Format:

Yihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth
Kumar, and Kristopher Micinski. 2025. Optimizing Datalog for the
GPU. In Proceedings of Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 1 (ASPLOS ’25). ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3669940.3707274

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03.
https://doi.org/10.1145/3669940.3707274

1 Introduction

Declarative languages enable their users to write high-level
logical rules that specify acceptable solutions to a prob-
lem, leaving efficient implementation to a high-performance
backend. In particular, modern CPU-based Datalog engines
power state-of-the-art systems in program analysis [5, 6,
12, 13], social-media mining [18, 44, 45, 49], and business
analytics [41]. Such engines enable a user to specify de-
ductions (forming an intensional database, henceforth IDB)
over extensionally manifest relations (the extensional data-
base, henceforth EDB). For example, given an input relation
Edge(from,to), the program REACH computes Edge’s transi-
tive closure:

Reach(from, to) ← Edge(from, to) .
Reach(from, to) ← Edge(from, mid), Reach(mid, to).

The second rule requires recursive computation to a fixed-
point: the engine iteratively discovers an ever-larger inten-
sional database (Reach), starting from the extensional data-
base (Edge). Unfortunately, best-in-class in-memory Data-
logs hit scalability walls around 8–16 threads due to the
challenges of working with locking, linked data structures
in a parallel, shared-memory setting. For example, as we
will soon see, when run at 32 threads on transitive closure,
Soufflé [21] (a state-of-the-art CPU-based engine) spends
77.8% of its time in serialized tuple deduplication/insertion.

Compared to CPUs, GPUs offer hundreds of thousands
of threads, along with extremely high memory throughput
via HBM [20]. However, achieving optimal performance ne-
cessitates embracing the GPU’s programming model. Tra-
ditionally, CPU-based graphics processing code has been
accelerated via SIMD instructions (such as AVX and SSE), ne-
cessitating that all threads operate in lockstep and strongly
penalizing thread divergence. While GPUs are inspired by
this SIMD paradigm, modern GPGPU programming is SIMT
in nature, allowing parallel execution at a per-thread gran-
ularity. Threads can diverge at the sub-warp level using
advanced thread scheduling techniques [37]. As we will see,
the SIMT nature of modern GPUs is a natural fit for Data-
log, which stresses both massive data parallelism (e.g., large
joins), and task parallelism (e.g., multiple rules).

https://doi.org/10.1145/3669940.3707274
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707274

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, NetherlandsYihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth Kumar, & Kristopher Micinski

In this paper, we introduce GPUlog: a GPU-based library
for parallel relational algebra kernels, enabling the execution
of Datalog programs on modern GPUs. GPUlog is backed by
a novel SIMT data structure: the hash-indexed sorted array
(HISA).We designedHISA to balance the concerns of modern
Datalog on the GPU, enabling three critical tasks: (1) efficient
range queries, necessary for joins, (2) lock-free deduplication,
and (3) parallel iteration. Additionally, GPUlog provides
abstractions for optimized evaluation of 𝑛-way loop-joins
we call temporarily-materialized joins, offering a space-for-
time trade-off we found crucial to scale to high data loads.

We have usedGPUlog to implement and comprehensively
study the performance of graph analytics (reachability, same
generation) and program analysis (points-to analysis), evalu-
atingGPUlog against cuDF, GPUJoin, and Soufflé [21, 40, 48].
We observe improved (5×) join performance compared to
state-of-the-art GPU join algorithms (due to efficient range
queries enabled by HISA), along with significantly reduced
memory footprint. Additionally, GPUlog is the first-ever
GPU Datalog implementation to achieve net-positive perfor-
mance versus CPU-based engines, beating Soufflé (a leading
CPU-based solver) by up to 45× (NVIDIA H100 GPUlog vs.
EPYC 7543P Soufflé). Our contributions are as follows:

• TheHash-Indexed SortedArray (HISA), a novel relation-
backing data structure which provides range querying
while leveraging the efficiencies of dense representa-
tions.
• GPUlog, a CUDA-based library for implementing Dat-
alog queries on the GPU; GPUlog uses HISA as its
tuple representation.GPUlog also leverages two novel
strategies apropos Datalog on the GPU: eager buffer
management and temporarily-materialized𝑛-way joins.
• A thorough evaluation of GPUlog, and a performance
comparison betweenGPUlog and state-of-the-art CPU
and GPU-based Datalog engines and GPU joins; we
show GPUlog outperforms prior work by 5–45× with
favorable memory footprint.

2 Datalog and Declarative Analytics

Datalog has yielded exciting results for a diverse set of data-
heavy analytic applications such as static program analy-
sis [7], graph mining [44], and machine learning [33]. Its
growing popularity lies in its expressive and elegant seman-
tics for specifying computations. Datalog programs comprise
an extensional database (EDB) of explicit facts and an inten-
sional database (IDB) of derived facts, transitively inferred
from the rules and EDB [17]. The language’s rules, written as
Horn clauses, define relationships between data, and Datalog
operates by iteratively applying these rules until no more
knowledge is discovered [30]. Each rule consists of a head
and a body. The general form of a Datalog rule is:

Head(...) ← Body1 (...), ..., Body𝑛 (...).

The head, represented by a single predicate atom, signifies
the derived fact to be inferred. The body, made up of comma-
separated predicate atoms, specifies the conditions for the
head’s truth, with commas serving as a logical "AND" (∧).
The implication symbol← connects the head and body, sig-
naling that the head is derived when the body’s conditions
are met. This structure is closely related to concepts in re-
lational database management systems (RDBMS). Notably,
the sharing of logical variables across body clauses directly
corresponds to a join operation on the related columns in an
RDBMS. However, Datalog’s foundation in logic program-
ming transcends the capabilities of traditional SQL. It lever-
ages this foundation to unlock greater expressive power,
enabling functionalities like recursion and inference beyond
simple data retrieval [43].

Semi-naïve evaluation. Modern Datalog engines owe
their algorithmic benefits to incremental evaluation tech-
niques such as semi-naïve evaluation [1], differential/timely
dataflow [32, 34], and DBSP [8]. Following Soufflé, GPUlog
uses semi-naïve evaluation, which builds a frontier of freshly-
discovered facts, avoiding the inevitable re-discovery of a
fact at every subsequent iteration. To illustrate this process,
consider the Same Generation (SG) query, used to determine
if two nodes in a graph share a topological order:

SG(x, y) ← Edge(p, x), Edge(p, y), x ≠ y.
SG(x, y) ← Edge(a, x), SG(a, b), Edge(b, y), x ≠ y.

In this query, Edge represents extensional edges in the input
graph. The first rule states that nodes x and y are in the same
generation if they have a common parent node p. The second
rule recursively derives SG by determining that x and y are in
the same generation if there exists a node awith an outgoing
edge to x, and another node b with an outgoing edge to y,
such that a and b are themselves in the same generation.
The semi-naïve evaluation strategy optimizes this query

execution, by maintaining the SG relation in three versions:
“new” (containing tuples generated in the current iteration),
“delta” (holding unique tuples added in the previous iteration),
and “full” (comprising all tuples derived across all iterations).
By performing the join operation solely on the delta relation,
the engine significantly reduces redundant computation.

Example. Figure 1 illustrates each iteration of the SG
query. During the first iteration, only the first rule gener-
ates new tuples since SG is empty and thus the second rule
yields nothing. This rule applies when two edges in the graph
merge from the same starting node but lead to different des-
tination nodes; these edges are joined to generate new SG
tuples. For instance, the tuple SG(7, 8) is produced by joining
Edge(4, 7) and Edge(4, 8), both of which originate from node
4. Upon completing the first iteration, the newly generated
tuples are moved into both the delta and full versions of the
SG relation, preparing them for subsequent computation.

Optimizing Datalog for the GPU ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

0

1

2

4

3

5

7

8

6
p x

0 1

0 2

1 3

1 4

2 4

2 5

3 6

4 7

4 8

5 8

Edge

p y

0 1

0 2

1 3

1 4

2 4

2 5

3 6

4 7

4 8

5 8

Edge

x y

1 2

2 1

3 4

4 3

4 5

5 4

7 8

8 7

0

1

2

4

3

5

7

8

6

Edge SG

SG

Delta and Full

SG
Delta

SG
New

x y

3 4

3 5

4 5

6 7

7 8

6 8

a b

1 2

2 1

3 4

4 3

4 5

5 4

7 8

8 7

a x

0 1

0 2

1 3

1 4

2 4

2 5

3 6

4 7

4 8

5 8

Edge Edge

x y

3 5

5 3

6 7

7 6

6 8

8 6

Join
Populating

Delta

SG
Delta

b y

0 1

0 2

1 3

1 4

2 4

2 5

3 6

4 7

4 8

5 8

x y

3 4

3 5

4 5

6 7

7 8

6 8

SG
Full

Merge
Full/Delta

x y

1 2

2 1

3 4

3 5

4 3

4 5

5 3

x y

5 4

6 7

6 8

7 6

7 8

8 6

8 7

SG
Delta

SG
New

x y

3 5

5 3

6 7

7 6

6 8

8 6

a b

3 5

5 3

6 7

7 6

6 8

8 6

a x

0 1

0 2

1 3

1 4

2 4

2 5

3 6

4 7

4 8

5 8

Populating
Delta

b y

0 1

0 2

1 3

1 4

2 4

2 5

3 6

4 7

4 8

5 8

Edge Edge

Join

Empty
SG

Delta
End

Iteration 1:

Iteration 2:

Iteration 3:

Figure 1. The execution results of each iteration in Same Genera-
tion (SG) query.

The middle of Figure 1 shows the second iteration in-
volving a three-way join: Edge ⊲⊳ SG𝑑𝑒𝑙𝑡𝑎 ⊲⊳ Edge, leading
to the derivation of indirect same generation tuples, such
as SG(6, 8), from Edge(3, 6), Edge(4, 8), and SG(3, 4) (in the
delta version). Notice that the new version of the SG relation,
generated post-join, contains duplicates tuples from its full
version, such as SG(3, 5) and SG(7, 8). To ensure maintain
the invariant that delta and full are disjoint, a deduplication
process is implemented both within the delta and against
the full set as the new tuples are allocated.

After completing the second iteration, the Datalog engine
proceeds with the third iteration, as shown in the bottom
of Figure 1. The previous iteration’s SGdelta is used as the
input for the join operations in the current iteration. The join
results in new tuples SG𝑛𝑒𝑤 ; however, all of these tuples are
already present in SG𝑓 𝑢𝑙𝑙 , leading to an empty SG𝑑𝑒𝑙𝑡𝑎 . This
indicates that the query has reached its fixpoint. We revisit

semi-naïve evaluation in more detail within the context of
our GPU-based implementation in Section 4.

3 GPU Datalog: Challenges and Concerns

The high performance of modern Datalog engines (such as
Soufflé [21] and BigDatalog [45]) is due to a combination
of factors, including compilation, data structures, and semi-
naïve evaluation. Among these, we focus on the design of a
GPU-based relation-backing data structure. In the context
of relevant related work, we outline four key requirements
demanded of a GPU-based relation-backing data structure.
No state-of-the-art implementations sufficiently satisfy all
of our requirements (at least, in a fully-general manner).

[R1]: Efficient Range-Querying. Joins 𝑅(. . .) ⊲⊳ 𝑄 (. . .)
are operationalized inmodernDatalog engines via loop-joins,
scanning 𝑅 and range-querying 𝑄 , or mutatis mutandis for
𝑄 and 𝑅. To support range-querying, tuples are organized
(e.g., via indexing) to associate sets of tuples with a set of
join columns. We call the scanned relation the outer rela-
tion, and the range-indexed relation the inner relation. Com-
pared to traditional RDBMS systems—which cannot possi-
bly compute optimal indices due to the ad-hoc nature of
querying—modern Datalog engines perform indexing for ev-
ery query [50]. Modern engines employ a mix of minimally-
locking linked data structures such as B-trees and Bries
[22, 23, 42], and are carefully tuned for optimal performance
on shared-memory, CPU-based systems.
We can now identify the first requirement for our GPU-

based data structure: it must support fast range queries [R1].
Several prior GPU-based approaches (e.g., GPUJoin) have im-
plemented SIMT-friendly data structures to enable fast range
queries. For example, relations may be stored in hashmaps
whose indexed columns serve as keys, andwhose non-indexed
columns act as values. By leveraging atomic operations for
key updating and open addressing, these hashmaps may be
constructed in a data-parallel manner.

[R2]: Parallel Iteration. Hash-based data structures, due
to their sparse nature, face limitations in efficient iteration.
To enable parallel iteration on the GPU, the data stored in
these hash-based structures must undergo a serialization
process. This involves traversing the hashmaps and copying
all the elements into a contiguous array. Consequently, while
these data structures are suitable for inner relations where
range query speed is the focus, they are not ideal for outer
relations that require iteration. It can be argued that keeping
the outer relation as an array and the inner as a hash table
could resolve this issue. However, in Datalog, it is common
for a relation to function both as an inner and outer relation.
As an example, the first rule of the same generation query
in Section 2, involves a self-join on the Edge relation.

The limitations of hash-based data structures, particularly
their iterability, make them less favorable for outer relations

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, NetherlandsYihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth Kumar, & Kristopher Micinski

1

0 1 2 3 4 127 128

…

4 1 5 3

2 4 2 2 4

2 2 5 9 1

2 5

3 2

1 0

0 2 127 4 1 128 3

0 1 2 3 126 127 128

K: hash(1,2)
V: 0

(1,2,2)(1,2,5)(2,3,1)(3,4,1) (4,4,2)(5,2,0)(5,2,9)

K: hash(2,3)
V: 2

K: hash(3,4)
V: 3

K: hash(4,4)
V: 126

K: hash(5,2)
V: 127

…

Data array

Sorted index
array

Hash Table

Figure 2. Example of a 3-arity relationwith 2 join-columns (shown
in color red) stored in HISA.

in join operations where GPU-parallelizable traversal is cru-
cial. Thus, our second requirement for the data structure is
to support parallel iteration [R2].

[R3]:Multiple JoinColumns. Real-world analysis queries
can contain multiple join columns. For instance, consider the
query from DDisasm [13] (a Datalog-based disassembler):

value_reg_unsupported(EA, Reg) ←
def_used.for_address(EA, Reg, _),
arch.memory_access(LOAD, EA,

_, _, Reg, RegBase, _, _, _),
RegBase ≠ NONE .

This join operation involving the def_used.for_address and
arch.memory_access is executed on two columns: EA and
Reg. Parallel construction of hashmaps on GPUs depends on
atomic operations, which have a size limitation of 64 bits, or
at most, 128 bits. As a result, directly using multiple columns
as keys in the hashmap can be problematic, especially when
the combined size of these columns exceeds the 128-bit limit.
This restriction poses challenges in efficiently storing and
accessing datawithmultiple columns inGPU-based hashmap
implementations. This brings us to the third requirement of
our data structure, it must support multiple join columns [R3].

[R4]: Efficient deduplication. As a final requirement,
the data structure should support efficient deduplication [R4].
As mentioned earlier, deduplication is a crucial part of semi-
naïve evaluation in modern Datalog engines (see Figure 1).
Unfortunately, many existing GPU Datalogs do not support
deduplication (RedFox [55] and GPUDatalog [31]).

4 The Hash-Indexed Sorted Array (HISA)

To meet all four requirements ([R1], [R2], [R3], and [R4]), we
developed a novel data structure we call the Hash-Indexed
Sorted Array (HISA). HISA, inspired by HashGraph [15], is a
custom-designed data structure consisting of three intercon-
nected layers. At its foundation lies the data array, which
stores the original tuple data. Built upon this data array is a

sorted index array, which stores the indices of the tuples in
ascending order. The third layer is an open-addressing hash
table, constructed on top of the sorted index array. HISA is
different from other data structures as instead of building the
hash table directly on the actual data (tuples), we construct
it on the sorted index array. This approach allows us to store
references only for tuples with unique join column keys,
resulting in a more efficient use of memory.

Figure 2 sketches an example of a HISA data structure at
runtime (in VRAM). We will now walk through each of the
tiers, and discuss how they collectively enable [R1]–[R4].

4.1 Data Array

The data array represents the original GPU buffer that stores
all the tuples of a relation transferred from the CPU to the
GPU. The 𝑘-ary relation data can be seen as a 2D array of
size 𝑛 × 𝑘 , where 𝑛 is the total number of tuples/rows and
𝑘 is the number of columns of the relation. An example
of this 2D array can be seen at the top of Figure 2. Here
𝑛 = 129 and 𝑘 = 3, but, for the sake of clarity in exposition,
the 2D array is shown in its transposed view. We store this
2D data in row-major order in the GPU buffer. Therefore,
the tuples of Figure 2 are stored in a buffer that looks like –
{1, 2, 2, 4, 4, 2, 1, 2, 5 . . . , 2, 3, 1, 5, 2, 0}.
This densely-packed contiguous arrangement, in contrast

to sparse data structures, simplifies access for the GPU. GPU
threads can then efficiently perform strided access to under-
lying the data array.

This simple layoutmakes it easy to implement parallel data
retrieval, addressing the requirement for fast iteration [R2].
Coalesced memory access, enabled by our layout, allows
multiple GPU threads to fetch data from the same memory
block simultaneously, improving cache performance and
optimizing memory operations. We provide implementation
details of this parallel data access in Section 5.1, in the context
of iterating the outer relation for a join operation.

Merge operation. Merging two HISAs typically occurs
when combining the full and delta versions of a relation. In
semi-nav̈e evaluation, to avoid redundant computation, the
delta relation contains only fresh and unique tuples gener-
ated in the previous iteration, deduplicated against the full
relation. Consequently, when merging delta and full, no ad-
ditional deduplication is needed—the delta’s data array can
be directly concatenated to the full’s data array.

4.2 Sorted Index Array

The sorted index array stores the indices of the tuples from
the data array in ascending order. The indices are arranged
based on a lexicographical ordering of the tuples. This en-
sures the join-columns appear first, followed by the remain-
ing columns. For example, consider a 3-arity data array with
tuples {2, 1, 5}, {2, 5, 9}, and {2, 1, 2}, where the second col-
umn is the join-column. The corresponding sorted index

Optimizing Datalog for the GPU ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Algorithm 1 Construction of Sorted Index Array 𝐻𝑖 for
Relation 𝐻
1: for all tuple 𝑇 in 𝐻.data_array parallel do

2: jc← [join columns of 𝑇]
3: njc← [non-join columns of 𝑇]
4: Insert (jc ++ njc) into 𝐻𝑖 .data_array
5: end for

6: 𝐻𝑖 .sorted_index_array← [0 ... 𝐻.tuple_size]
7: for 𝑖 in [0 ... 𝐻.arity] do
8: 𝑐𝑜𝑙𝑡𝑚𝑝 ← the 𝑖𝑡ℎ of column of tuples in 𝐻𝑖

9: stable sort 𝐻𝑖 .sorted_index_array use 𝑐𝑜𝑙𝑡𝑚𝑝 as key
10: end for

array would be 1, 0, 2, because the tuples, after reordering
the join column to index 0, follow the lexicographic ordering
(1, 2, 2) < (1, 2, 5) < (5, 2, 9). In essence, the sorted index ar-
ray decouples the sorting order of tuples from their physical
arrangement in the data array. It maintains the positions of
tuples within the data array, and these positions are sorted
based on the lexicographical order of their associated tuples.

Construction. We extensively use NVIDIA’s Thrust li-
brary [36] to perform tasks such as copying, gathering, and
sorting. The first step in the process of creating the sorted in-
dex array is to reorder the columns, which we perform using
Thrust’s transform function. This can be seen in line num-
bers 1 to 5 in the Algorithm 1. After the reordering phase, we
populate the sorted index array, by using Thrust’s stable sort
utility. This phase performs a stable sort based on the least
significant column (rightmost) of the tuple and progresses
towards sorting by the most significant column (leftmost).
This sorting process is similar to radix sort; however, in this
case, tuples are sorted one column at a time (rather than one
bit at a time). This can be seen in line numbers 7 through 10.

Fast range-queries. Rearranging the column order to po-
sition the join columns at the beginning and then sorting the
tuples offers two significant benefits. First, it enables efficient
range queries, and second, it facilitates the fast merging of
two relations. While fast-range queries are crucial for per-
forming join operations, merging relations is an essential
part of semi-naïve evaluation. As discussed in Section 2, the
new relation is merged into the full relation at each iteration
of the fixed point.
The sorted-index array works in tandem with the hash-

map (described in the next subsection) to execute range
queries. The hash map directly positions a GPU thread (in
O(1) time) at the appropriate location within the sorted in-
dex array. Since the sorting process groups together tuples
with identical join-column values, a range query can easily
retrieve the entire set of tuples sharing the same join-column
values by a linear scan.

Deduplication. HISA supports deduplication [R4] by first
sorting all columns in lexical order, facilitating the rapid

Algorithm 2 Hash table construction algorithm
1: for each tuple 𝑇 in input relation, perform in parallel do
2: 𝐻 ← ℎ𝑎𝑠ℎ(𝑇)
3: 𝐼 ← 𝐻 (mod hash_table_size)
4: 𝑇𝑝𝑜𝑠 ← get_position(H, sorted_index_array)
5: while 𝑇 is not inserted do

6: 𝐾 , 𝑉 ← hash_table[I]
7: 𝐾 ′ ← AtomicCAS(𝐾 , 𝐻)
8: if 𝐾 ′ = 𝐻 or (𝐾,𝑉) is uninitialized then

9: while 𝑇𝑝𝑜𝑠 < 𝑉 do

10: 𝑉 ← AtomicCAS(𝑉 , 𝑇𝑝𝑜𝑠)
11: if 𝑉 = 𝑇𝑝𝑜𝑠 then

12: break ⊲ Inserted 𝑇 in ℎ𝑎𝑠ℎ_𝑡𝑎𝑏𝑙𝑒
13: end if

14: end while

15: else

16: Perform linear probing on 𝐼
17: end if

18: end while

19: end for

identification and removal of duplicates. The deduplication
process is then executed by comparing each tuple with its
adjacent tuple during a parallel scan. This approach ensures
both efficient grouping for joins and effective deduplication,
leveraging the parallel processing capabilities of the GPU.

Merge operation. Parallel merging of two sorted arrays
is a common pattern in GPGPU programming. We utilize
the path merge algorithm [16] provided by NVIDIA’s Thrust
library to merge the sorted index arrays of two HISAs.

4.3 Open-Addressing Hash Table

The sorted index array stores tuples in increasing order, clus-
tering tuples which share the same join-columns. To further
optimize range queries, enabling retrieval of all tuples shar-
ing the same join columns and meeting requirement [R2],
HISA incorporates an open-addressing-based hash table. Us-
ing a hash table avoids control flow divergence and improves
memory access efficiency compared to other range query
techniques, such as tree-based searches.

The hash table is constructed to store distinct hash values
(as keys) derived from the tuples of the data array, while only
considering the join-columns to compute the hash. These
keys are then associated with the smallest index of a tuple
in the sorted index array (as values) that contains the corre-
sponding join-column values. An example of this hash table
can be seen at the bottom of Figure 2. In this example, the
hash table entry on the far right captures the hash value of
join-columns (5, 2) and associates it with the starting po-
sition of all tuples having the join-column (5, 2), indicated
by the 127𝑡ℎ position in the sorted index array. Instead of
directly storing the join column values—which may exceed
64 bits in size—we opt to store their hash value as the key;
this strategy effectively meets requirement [R3].

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, NetherlandsYihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth Kumar, & Kristopher Micinski

Construction. The pseudo-code for the construction of
the hash table can be seen in Algorithm 2. We construct an
open-addressing hash table, employing linear probing to han-
dle collisions. The keys of the hash table are generated from
the data array, while the values are derived from the sorted
index array. GPU threads go through the sorted index array,
which allows them to access all elements of the data array.
They calculate hash values for every tuple, using only the
join-column values and use these hash values as keys in the
hash table. The hash table’s values store the positions of the
corresponding keys in the sorted index array, enabling quick
lookup and access to the relevant data elements. To handle
collisions that occur when two keys map to the same slot
in the hash table, we employ linear probing. However, since
insertion is performed in parallel by thousands of threads, it
is possible that during collision resolution, two threads with
hash collisions attempt to write to the same hash slot. To
address this challenge, we utilize the atomicCAS (Compare-
and-Swap) operator at line 7 of the algorithm, which ensures
that only one thread can successfully update a slot at a time.

In parallel execution, multiple GPU threads update small-
est index of a tuple in the sorted index array simultaneously.
This also leads to a race condition when two tuples sharing
identical join column values are concurrently inserted into
the hash table by two separate GPU threads. We handle this
from line 9 to line 14 of the algorithm, also using atomicCAS
operator, which updates a value only if the new key-value
pair is smaller than one existing in the hash table.
To conduct a range query, the process begins with calcu-

lating the hash value of the join columns. Based on this hash
value, the method navigates to the smallest tuple possessing
the specified join-column values and then proceeds with a
linear scan until encountering a tuple where the join-column
value no longer matches. We show this in more detail in the
context of a join operation in Section V.A.

Merge operation. Currently, hash table merging of HISA
is done by inserting all elements from the Delta hash table
into the Full table. For each existing key, the value is up-
dated if the Delta value is smaller than the current value in
the Full hash table. While we consider more efficient algo-
rithms (e.g., Cuckoo Hashing[29]) as an important future
direction, GPU hash tables can process up to 0.5 billion keys
per second, making this approach faster than merging sorted
arrays, which requires significant time for buffer allocation
and deallocation during path-merging.

5 GPUlog: GPU-powered datalog engine

In this section, we introduce GPUlog, our GPU-accelerated
implementation of Datalog that leverages the HISA to opti-
mize performance and efficiently utilize the GPU. We focus
our discussion on three distinguishing aspects: (a) implemen-
tation of the semi-naïve evaluation in the fixed-point loop,
(b) a novel optimization to significantly accelerate 𝑛-way

Init
Full/Delta/New

Relational Algebra
Kernel (Joins,

Projections, etc.)

Populating
Delta

Merge
Full/Delta

Clear
New

Empty
Delta?

End
Yes

No

Figure 3. Workflow of semi-naïve evaluation.

joins: temporary materialization, and (c) eager buffer man-
agement, which leverages amortization to improve memory
allocation.

5.1 Evaluation of Datalog Programs

Datalog’s evaluation is often given in terms of relational
algebra, which includes relational operators such as join
and projection. Evaluation executes these kernels in a loop.
In each iteration of the loop, compute kernels (compiled
from the program rules) generate new tuples (facts); these
newly-discovered facts may then trigger further deduction
in subsequent iterations. The process continues until a fixed
point is reached, where no new facts can be derived. Figure 3
illustrates the detailed steps involved in this evaluation pro-
cess, namely “Join,” “Populate Delta,” “Merge Full/Delta,” and
“Clear New.”

Implementing Joins. The bulk of the evaluation over-
head of modern Datalog evaluation lies in iterated joins. For
example, consider the following query:

Foobar(𝑐, 𝑑) ← Foo(𝑎, 𝑏, 𝑐), Bar(𝑎, 𝑏, 𝑑).

This join operation involves two relations, each with three
attributes, sharing the first two columns as join columns
in Figure 4. To facilitate parallel iteration over all tuples
of the outer relation, we use the data array component of
the HISA data structure. As shown in the figure, we access
the data array of the outer relation in stride units. The size
of each stride corresponds to the total number of threads
employed for concurrent execution. Each GPU thread con-
currently retrieves a tuple within a stride, where the thread
ID corresponds to the tuple’s offset within that stride. In the
example shown all tuples of the outer relation are accessed in
two strides, the first stride ranges from tuples Foo(2, 3, 5) to
Foo(5, 2, 4) and the second stride ranges from Foo(2, 3, 2) to
Foo(5, 2, 6). We encapsulate this strided access in the form of
a parallel for in line number 1 of the Algorithm 3. Users can
configure the stride size based on their GPU, with a recom-
mended size being 32 times the number of stream processors.
By accessing the data in the outer relation using this stride-
based approach, data locality is improved, leading to optimal
utilization of the cache and enhancing overall performance.

Optimizing Datalog for the GPU ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

K: hash(1,2)
V: 0

K: hash(2,3)
V: 2

K: hash(5,2)
V: 127

0 2 1 128 127

0 1 2 127 128

(1,2,2)(1,2,5)(2,3,1) (5,2,0)(5,2,9)

…

Outer
Relation

Inner
Relation

Join ⨝

2

…

1 1

3 2 2

5 9 5

2 5

3 2

1 4

T0 T1 T2 Tn-1 Tn

…Hash Table

Sorted Index
Array

1

…

2 1

2 3 2

2 1 5

5 5

2 2

9 0

0 1 2 127 128

Data Array

Join Results
T0

Tn

2

…

5 2

3 2 3

2 6 1

2 5

3 2

3 6

T0 T1 T2 Tn-1 Tn

2

3

5

2

3

2

⨝

2

3

1

5

1

2

1

5

2

4

5

2

6

⨝

5

2

0

4

0

4

9

5

2

9

…

6

0

6

9

Figure 4. Example of a join between two 3-arity relations
Bar (inner) and Foo (outer).

The lower section of the figure demonstrates how each
thread queries the inner relation. The range queries are fa-
cilitated by using the hash table and the sorted index array
components of HISA. The hash table is used to find the
starting position of the relevant queries in the sorted in-
dex array (lines 2 to 5), which is then linearly scanned to
retrieve all matching tuples from the data array (lines 6 to
10). For instance, thread 𝑇0 operates on the outer relation tu-
ple 𝐹𝑜𝑜 (2, 3, 5) and 𝐹𝑜𝑜 (2, 3, 2). After hashing column (2, 3),
GPUlog uses the hash table of the HISA structure to find the
smallest tuple at position 2 in the Bar relation’s sorted index
array, yielding Bar(2, 3, 1). A scan starting from this position
reveals that the only matching tuple in the Bar relation is
Bar(2, 3, 1). On the right side of the figure, the join results
show that tuples Foobar(5,1) and Foobar(2,1) are generated
as a result of the join between matched tuples from the outer
and inner relations.
Although both employ hash join-like algorithms, GPU-

log differs from the join algorithm used in another Datalog
engine prototype, GPUJoin [48]. In GPUJoin, the hash table
directly contains all tuples, and during the join, tuples are
accessed through linear probing of the hash table. This de-
sign can lead to larger hash tables and increased memory
overhead, especially when a low load factor is used for faster
construction. In contrast, our tool’s join algorithm accesses
the hash table only to find the starting position of tuples
sharing the same indexed column. This approach keeps the
hash table size small and allows for fast construction.

Populating delta. The next step in the fixpoint loop in-
volves populating the delta relation, which will be used in
the join phase of the next iteration. In this step, delta is con-
structed by removing from new the tuples that are already
present in full. GPUlog accomplishes this using a relational
algebra “set difference” applied to the new and full relations.
It is worth noting that some prior work, such as GPUJoin,
fuses this step with the merging step by directly merging the
non-deduplicated delta relation and then deduplicating the

Algorithm 3 Parallel Binary Join on GPU
1: for 𝑇𝑜𝑢𝑡𝑒𝑟 in Relation𝑜𝑢𝑡𝑒𝑟 parallel do
2: ht ← hash(𝑇𝑜𝑢𝑡𝑒𝑟 .join_columns)
3: index_pos← ht % hash table size of Relation𝑖𝑛𝑛𝑒𝑟
4: pos← Relation𝑖𝑛𝑛𝑒𝑟 .sorted_index_array[index_pos]
5: 𝑇𝑖𝑛𝑛𝑒𝑟 ← tuple at pos in Relation𝑖𝑛𝑛𝑒𝑟 .data_array
6: while 𝑇𝑖𝑛𝑛𝑒𝑟 .join_columns ≠ 𝑇𝑜𝑢𝑡𝑒𝑟 .join_columns do
7: generate result tuples based on 𝑇𝑜𝑢𝑡𝑒𝑟 and 𝑇𝑖𝑛𝑛𝑒𝑟
8: pos++
9: 𝑇𝑖𝑛𝑛𝑒𝑟 ← tuple at pos
10: end while

11: end for

merged full relation. This fusion approach is efficient when
the size of the full relation is small. However, deduplicating
the full relation requires a full scan of all the tuples in the
full relation, which becomes highly expensive as the size of
the full relation grows. Therefore, GPUlog takes a different
approach by separating the delta relation population into a
distinct phase.

Merging Full with Delta and Clearing New. The final
step before fixpoint checking involves merging all the tuples
within the delta relation into the full relation, followed by
the removal of all tuples within the new relation. Leveraging
the HISA bulk insertion technique outlined in Section 4.2, we
incorporate all deduplicated new tuples from delta into full in
parallel on the GPU. It is worth noting that the management
of buffer memory during merging between full and delta
plays a crucial role in ensuring the optimal performance of
larger queries.

5.2 Temporarily-Materialized 𝑛-way Joins

While simple Datalog queries use only binary joins, practical
applications include 𝑛-way joins. An example is the Same
Generation (SG) query mentioned in Section 2. The second
rule of SG represents an inductive case that necessitates
joining SG with Edge twice. When employing semi-naïve
evaluation, its join plan may be expressed via the following
relational algebra operation:

SGnew = Edgefull ⊲⊳ SGdelta ⊲⊳ Edgefull

Various mechanisms exist for evaluating 𝑛-way joins; while
special-purpose joins (such Leapfrog Triejoin [52]) can achieve
worst-case optimal bounds, they do so by imposing repre-
sentation restrictions. Modern engines tend to favor nested-
loop joins [21], in which case 𝑛-way joins are ordered into
sequences (or trees) of binary joins, with an emphasis on
optimizing the join order[57]. In the case of SG, it first loops
over Edgefull and within the loop body, it further loops on all
matched tuples in Edgedelta. This generates another nested
loop over to join with Edgefull.

Due to the architecture of GPU, conditional branching in
the program can lead to threads idling during an 𝑛-way join.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, NetherlandsYihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth Kumar, & Kristopher Micinski

SGdelta

Join ⨝

2 …2
4 9

Edgefull

T0 T1 Tn-1 Tn

Tmp

Tmp = SGdelta ⨝ Edgefull

4 5
1 4

4 2
3 6

2 2
5 7

…

4 4
6 5

T0

9
7

…

Join ⨝

Edgefull

SGnew = Tmp ⨝ Edgefull

4 2
3 6

2 1
5 7

…

Tmp 4 4
6 5

T0

9
7

…

SGnew
6 …
3

T0

5
3

Tn-1 Tn

Idle

Figure 5. Thread waiting in nested non-materialized join
due to workload imbalance. 𝑇0 to 𝑇𝑛 are in the same warp.

For example, in Figure 5, thread𝑇0 is assigned to compute the
join result for the tuple SG(2, 4). During the first join with
Edgefull, it generates numerous temporary results. Unfortu-
nately, thread 𝑇𝑛−1 and thread 𝑇𝑛 lie within the same GPU
warp and do not find any matching tuples. In the subsequent
join between the first set of join results and Edgefull, 𝑇0 must
continue the computation, while threads 𝑇𝑛−1 and 𝑇𝑛 , have
to remain idle until𝑇0 completes the second join and returns.

Another approach to divide the workload among threads
involves materializing each sub-join. We leverage this obser-
vation by using a “temporary materialized” buffer. In SG, the
second rule can be seen as two sequential binary joins:

Tmp(𝑏, 𝑥) ← Edge(𝑎, 𝑥), SG(𝑎, 𝑏).
SG(𝑥,𝑦) ← Edge(𝑏,𝑦), Tmp(𝑏, 𝑥).

In relational algebra, an explicit join plan may be written as:

Tmp = SGdelta ⊲⊳ Edgefull
SGnew = Tmp ⊲⊳ Edgefull

This split does not make a significant impact on performance
for CPU based system. However, in GPU-based systems, hav-
ing two sequential joins scheduled into two separate exe-
cutions of GPU kernel functions is notably faster from the
first method, where only one GPU kernel function executes.
By utilizing the technique of temporal materialization, data
parallelism is optimized to its fullest extent. This optimiza-
tion ensures that all available threads are actively engaged
in computation, effectively eliminating any idle time.
The first join’s workload is based on tuples in SGdelta. By

contrast, the workload of the second join is divided based
on the Tmp tuples. In the previous example, temporary join
result tuples like Tmp(9, 7) are assigned to other idle threads,
such as thread 𝑇𝑛−1, 𝑇𝑛 , rather than all being processed by
the busy thread 𝑇0. In this way, all threads in the same GPU
wrap will have a similar workload, eliminating idle threads.

5.3 Buffer Management and Amortized Allocation

As we will see in Section 6.3, the merge operation of delta
tuples into the full version of the relation becomes a bottle-
neck, consuming up to 45% of the total execution time. Buffer
management during the merge process is particularly expen-
sive, as it requires reallocating new buffers and copying data
equivalent to the combined size of the full relation and the
delta for each iteration. To address this, GPUlog employs a
strategy called Eager Buffer Management (EBM). Unlike the
buffer management policies in other GPU Datalog engines,
such as GPUJoin, the buffer allocated using EBM in GPUlog
is not freed immediately after the merge operation. Before
performing the merge, GPUlog checks if the buffer allocated
in the previous iteration is sufficient for the current merge
operation. If it is, the buffer is reused; if not, rather than allo-
cating a buffer with the exact size of the full and delta tuples,
GPUlog allocates a buffer sized to the full tuple size plus
k times the delta tuple size, where 𝑘 is a tunable parameter
depending on the total size of VRAM. This strategy reduces
the overhead of frequent buffer allocations in every iteration
and uses a small amount of extra memory to enable faster
iterative computation.

6 Evaluation

In this section, we conduct a comprehensive performance
evaluation of GPUlog, demonstrating the impact of our op-
timization techniques. Our assessment begins by analyzing
how eager buffer management influences both query execu-
tion time and system memory usage. We then compare the
performance of GPUlog against existing Datalog engines,
utilizing well-established Datalog queries and real-world
datasets. Due to the limited availability of mature GPU-based
Datalog engines and the inaccessibility of GPUDatalog [31]
in both source and binary forms, we also include a state-
of-the-art CPU-based system (Soufflé) in our comparison.
Although DCDatalog [56] recently claims to have surpassed
Soufflé in speed, the paper’s artifacts are not accessible for
evaluation. Finally, we demonstrate the practicality of GPU-
log for program analysis, showing significant performance
boosts over CPU-based solutions.

6.1 Environment Setup

GPUlog andOtherGPU-Based Systems. Except for Sec-
tion 6.6, all our CUDA-related code runs on a server equipped
with a 64 core AMD EPYC 7713 CPU (code name Milan), and
an NVIDIA H100 PCIe 80GB GPU. The CUDA toolkit version
we use is 11.8. For cuDF, we employ version 23.10, the latest
version available at the time of our evaluation, also running
under CUDA 11.8. The code for Datalog queries in cuDF and
GPUJoin is sourced from its public GitHub repository [46].
In Section 6.6, our GPUlog-HIP implementation is tested
on 2 machines. One has dual AMD EPYC 7713 processors
together with four 64GB AMD Instinct MI250 cards. Another

Optimizing Datalog for the GPU ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

has dual AMD EPYC 7742 and four 32GB AMD MI50 GPUs.
In our benchmark, only one GPU for each system is used.
The NVIDIA A100 results are tested on a machine with a
32-core Intel Xeon Gold 6338 CPU. Although the testbed
we rented utilizes high-end CPUs, it is important to note
that using lower-performance CPUs does not affect our GPU
tool’s performance. We validated our A100 results on a less
powerful CPU and obtained nearly identical results.

CPU Based System: Soufflé. Our Soufflé experiments are
conducted on a single node (1×AMD EPYC 7543P) with 512G
RAM. All Soufflé queries are compiled into C++ code and
then compiled using gcc-10 with the optimization flag -O3.
To fully utilize all 32 cores on the test platform’s CPU during
compilation, we used the -j 32 option with the build system .
We found this setting delivered the best runtime on our test
platform.

6.2 Test Programs and Datasets

We evaluate reachability (REACH, Section I), same genera-
tion (SG, Section II), and context-sensitive program analysis
(CSPA) [26]. We include REACH as a common baseline which
stresses iterated binary joins, without any need for temporal
materialization. We include SG and CSPA as queries which re-
quire more intelligence in join planning and stresses support
for 𝑛-way joins. Recall the code for SG was introduced in
Section 5.2. We ran our experiments using ten large graphs
for both REACH and SG. These graphs were chosen from the
Stanford Network Analysis Project network dataset, SuiteS-
parse, and road network datasets [9, 27, 28], and vary in
size and application domain. For CSPA, we used input data
provided by the authors of RecStep [12].

6.3 Evaluating Eager Buffer Management

We assess the efficacy of our Eager Buffer Management
(EBM) mechanism by conducting a comparative analysis of
runtime and memory usage with EBM enabled and disabled,
using the REACH query on five distinct large graphs. Our
results are presented in Table 1. This table is organized into
four groups of columns. The first group specifies the datasets
used in the experiment. The second group of columns pro-
vides insights into the iteration counts within the REACH
query. This group is further divided into two sub-columns.
“Total” denotes the total number of iterations, while “Tail”
refers to the count of tail iterations, where the number of
delta tuples generated in that iteration is less than 1% of
the total tuples in the resulting Reach relation. Notably, the
absence of a tail iteration number for the “usroads” dataset is
due to the fact that the number of delta tuples generated in
every iteration is less than 1%. The third group of columns
displays the running time and speed-up ratio achieved by
enabling Eager Buffer Management (EBM). It reveals that
EBM accelerates all REACH queries, with greater benefits in

Table 1. Comparing runtime and memory usage of REACH in
GPUlog with and without eager buffer management on NVIDIA
H100

Iterations Query Time (s) Memory(GB)

Dataset Total Tail Normal Eager Normal Eager

usroads 606 / 52.42 17.53 20.35 26.84
vsp_finan 520 491 59.08 21.91 20.22 28.26
fe_ocean 247 90 47.19 23.36 37.97 50.43
com-dblp 31 18 17.83 14.30 43.24 60.18
Gnutella31 31 17 4.80 3.76 20.22 28.26

longer iterations, especially long tail ones. “usroads” bene-
fits the most, achieving a 3× acceleration. This is because
relations that have a higher percentage of tail iterations are
bound to benefitmore from EBM, as the extra buffer allocated
as part of the EBM will be able to accommodate the buffer
merge requirements of a large fraction of the tail iterations,
requiring fewer memory reallocations.

Table 2. Reachability execution time comparison: GPUlog
(NVIDIA H100) vs. Soufflé (AMD Milan CPU 32 cores), GPUJoin,
and cuDF on large graphs (OOM: out of memory).

Dataset Reach Time (s)
name edges GPUlog Soufflé GPUJoin cuDF

com-dblp 1.91B 14.30 232.99 OOM OOM
fe_ocean 1.67B 23.36 292.15 100.30 OOM
vsp_finan 910M 21.91 239.33 125.94 OOM
Gnutella31 884M 5.58 96.82 OOM OOM
fe_body 156M 3.76 23.40 22.35 OOM
SF.cedge 80M 1.63 33.27 3.76 64.29

6.4 GPUlog vs. SOTA GPU joins

In this section, we evaluate the performance of the REACH
query using GPUlog, GPUJoin, and cuDF, with Soufflé serv-
ing as the baseline. The results are summarized in Table 2.
The datasets used in the experiments represent a diverse
array of sources, ensuring a comprehensive assessment that
spans scientific communities, P2P networks, random graphs,
and road networks. This dataset diversity helps mitigate any
bias towards specific graph categories.

GPUlog consistently emerges as the fastest engine in all
test cases. Compared to GPUJoin, GPUlog exhibits a remark-
able speedup, with ratios often exceeding 3x. In the “fe_body”
testcase, the speedup ratio reaches an impressive 6x. No-
tably, GPUJoin, designed specifically for reachability queries,
stores output relations in raw arrays. This specialization sug-
gests that GPUlog could achieve even higher speedup ratios
when the method of GPUJoin is applied to general queries.
Compared to GPUJoin, GPUlog used less memory: GPUJoin
OOM’d twice during testing. This is because of its of use

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, NetherlandsYihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth Kumar, & Kristopher Micinski

Table 3. Same Generation (SG) execution time comparison: GPU-
log vs. Soufflé and cuDF. Soufflé running 32 core AMD Milan CPU;
GPUlog and cuDF running on NVIDIA H100 GPU.

Dataset SG size Time (s)
GPUlog HIP Soufflé cuDF

fe_body 408M 5.05 19.57 74.26 OOM
loc-Brightkite 92.3M 3.42 14.00 48.18 OOM
fe_sphere 205M 2.36 8.48 48.12 OOM
SF.cedges 382M 5.54 20.57 68.88 OOM
CA-HepTH 74M 2.79 5.92 20.12 21.24

ego-Facebook 15M 1.23 2.81 17.01 19.07

open-addressing-based hashmaps for storing relations, ne-
cessitating a low hashtable loading factor to facilitate joins.
By contrast, HISA employs hash tables only for accelerating
range fetching on indexed relations. This results in efficient
access even with a higher load factor (0.8).
We present another test case, SG, to further validate our

previous discussions. The results are presented in Table 3.
The SG query involves 𝑛-way joins and represents more gen-
eral use cases. As GPUJoin does not support the SG query, we
exclusively compare GPUlog with cuDF. Across all six test
cases, cuDF encounters out-of-memory (OOM) errors four
times, while the non-OOM test cases, although approaching
the baseline performance of Soufflé, remain considerably
slower than GPUlog. GPUlog consistently delivers stable
performance, running nearly 7× faster than the baseline in
most of cases, while not experiencing any OOM error.

6.5 Context-Sensitive Program Analysis

Program analysis is one of the most popular applications
of Datalog, with several state-of-the-art tools (DOOP [6],
cclyzer [5], and ddisasm [13]) implemented using Soufflé Dat-
alog. To evaluate GPUlog’s potential application to program
analysis, we implemented context-sensitive points-to anal-
ysis (CSPA), reproducing the experiments of Graspan [53].
We elide the full query for space, it includes rules which
initialize and propagate value flows, while simultaneously
discovering alias information; Graspan uses method cloning
(effecting inling) for context sensitivity. Using Graspan’s
data, we ran CSPA on httpd, (a statically-linked subset of)
linux, and postgres [53]. The results of our evaluation are pre-
sented in Table 4; the table lists the size of input and output
relations (second and third columns) and total running time
(fourth column). All relation sizes match that of Souffé’s.

We see a roughly 35-45× speedup versus Soufflé under
ideal conditions (Soufflé use 32 cores CPU with all optimiza-
tions, GPUlog running on NVIDIA H100 with maximum
buffer size), demonstrating the significant performance ad-
vantage of GPUlog over the CPU-based Soufflé. This is

mainly because the memory-heavy nature of program anal-
ysis workloads. Memory bandwidth and throughput signif-
icantly affect performance, and CPU systems usually have
lower memory bandwidth. For example, the AMD Milan’s
bandwidth is around 190 GB/s, while a data center GPU like
the NVIDIA H100 can have up to 3.35 TB/s. The lower mem-
ory speed and throughput prevent CPU-based systems from
fully utilizing their high single-core performance. Our de-
tailed analysis on CPU utilization further proves this, despite
utilizing all 32 CPU cores during computation, the efficiency
of Soufflé was relatively low, with CPU ratios of 571%, 449%,
and 683% for the httpd, Linux, and PostgreSQL datasets, re-
spectively. Note that a 100% utilization across 32 cores should
yield a CPU ratio of 3200%.
Figure 6 breaks down different phases of GPUlog when

running our queries. In this figure, “Deduplication” shows
time spent coalescing previously-discovered facts. “Indexing
Full/Delta” represents the time required for creating hash
indexing within GPUlog’s hybrid data structure. ‘ ‘Merge
Delta/Full” captures the time spent on inserting all tuples
from the delta relation into the full relation using GPUmerge.
Finally, “Join” represents the actual time spent performing
join operations across all relations. The join (39% of total
runtime) and merge (42% of total runtime) operations stand
out as the most time-consuming phases in our pipeline, as
depicted in the red and blue bar in the Figure 6. Since per-
forming joins between relations is computationally intensive
and one of our main focuses, we expect this phase to occupy
a significant portion of the total runtime. By leveraging the
HISA datastructure,GPUlog is able to make these joins more
efficient than previous GPU-based systems [47, 48]. However,
as the figure indicates, the merge operation is even more
time-consuming than the join phase. This is due to the reason
that lock-free style parallel path merge aglorithm we used
require pre-allocating a result buffer that matches the com-
bined size as total size of delta and full. Since the full relation
in Datalog is typically large, this result buffer can be sub-
stantial. Allocating and freeing such a large buffer in every
iteration is expensive, and, according to our detailed timing
results, this step becomes even more time-consuming than
the join and indexing operations in the query. To partially
address this challenge, we introduce an amortized buffer
management scheme (described in Section 5.3). While this
approach doesn’t fully resolve the issue, it mitigates the need
to allocate buffers at every iteration, thereby reducing the
overall computational load.

6.6 GPUlog Across Different Hardware

To increase the performance portability of GPUlog, we trans-
lated it to a Heterogeneous-Compute Interface for Portabil-
ity (HIP) [2] based engine (GPUlog-HIP hereafter) with an
identical API to our vanilla CUDA variant. This interface en-
ables seamlessly switching GPUlog implementations from
NVIDIA to HIP kernels. The HIP version of GPUlog, while

Optimizing Datalog for the GPU ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Table 4. Context-Sensitive Program Analysis (CSPA) execution
time comparison: GPUlog (NVIDIA H100) vs. Soufflé (32 core
AMD Milan CPU); input data from [4].

Dataset Input Relation Output Relation Time (s) Speedup
Name Size Size GPUlog Soufflé

Httpd Assign: 3.62e5
Dereference: 1.14e6

ValueFlow: 1.36e6
ValueAlias: 2.34e8
MemAlias:8.89e7

1.33 49.48 37.2x

Linux Assign: 1.98e6
Dereference: 7.50e6

ValueFlow: 5.50e6
ValueAlias: 2.23e7
MemAlias:8.84e7

0.39 13.44 34.5x

PostgreSQL Assign: 1.20e6
Dereference: 3.46e6

ValueFlow: 3.71e6
ValueAlias: 2.23e8
MemAlias:8.84e7

1.27 57.82 44.9x

0%

25%

50%

75%

100%

Httpd Linux PostgreSQL

Deduplication Indexing Delta Indexing Full
Merge Delta/Full Join

Figure 6. Running time detail analysis of CSPA query using
GPUlog on various real world datasets on NVIDIA A100.

Table 5. Comparison of GPUlog and GPUlog-HIP running times
across various GPU vendors and models

GPUlog (NVIDIA) GPUlog (AMD)
Query Dataset H100 A100 MI250 MI50

fe_body 5.05 8.61 19.57 41.99
SG BrightKite 3.42 6.79 14.00 30.05

fe_sphere 2.36 4.64 8.48 19.426

httpd 1.33 2.73 6.75 15.27
CSPA linux 0.39 0.77 1.39 3.32

postgres 1.27 2.68 6.79 14.55

not matching the CUDA version’s performance (due to miss-
ing libraries such as RMM [39]), offers broad compatibility
with different GPU architectures. This enables rapid deploy-
ment on the exascale systems, for example, Frontier and
Aurora [3, 38], which do not support CUDA.

To compare GPUlog’s performance across a range of data
center GPUs, we ran SG and CSPA using GPUlog on the
NVIDIA H100 and A100 and the AMD MI250 and MI50. The
outcomes of these tests are presented in Table 5. The NVIDIA
H100, successor to the A100, features more SM units (114 vs.
108), double the FP32 cores per SM (128 vs. 64), and improved
memory bandwidth (2TB/s vs. 1.5TB/s). Columns 4 and 5 of
our results show GPUlog benefits from these enhancements.

The last two columns illustrate GPUlog’s performance on
AMD GPUs. The MI250, with 104 computational units (64
core per unit) akin to NVIDIA’s SMs, shows comparable per-
formance to the NVIDIA A100 in CSPA tests but lags in SG
tests requiring more memory, performing at about half the
A100’s speed. The MI50, with half the capacity of the MI250,
displays nearly half its performance, pointing towards the
scalability of the approach. MI250 has similar total computa-
tional resources, it should have similar performance to the
A100. However, the most important reason for the lower
performance of the AMD MI250 is its dual chiplet design;

Table 6. Comparing Time Consuming Operation of GPUlog on
AMD EPYC 7543P 32-core Zen 3 CPU and NVIDIA A100 GPU. Each
running time in table are in seconds.

Sort Merge Memory
Tuples A100 Zen3 A100 Zen3 A100 Zen3

1,000,000 0.12 1.09 0.03 0.06 0.03 0.02
10,000,000 0.39 7.5 0.08 0.64 0.17 0.05
50,000,000 1.63 30.09 0.18 1.96 0.11 0.88
100,000,000 2.9 64.02 0.3 3.56 0.18 1.7
500,000,000 15.66 351.4 1.21 15.68 0.82 8.59

since GPUlog is a single-GPU system, only half of the com-
pute resources on the MI250 can be utilized, resulting in half
the performance of the A100. Another reason is our use of
the NVIDIA-specific RMM library in our implementation.
Since AMD’s ROCm does not support this library, we rely
on manual memory pooling instead; we leave optimizing
memory allocation in our HIP backend to future work.

Although fully implementing GPUlog on a CPU via SIMD
is possible, we believe such an implementation would not
achieve similar performance due to the significant memory
bandwidth differences between the two hardware architec-
tures. Due to the extensive potential engineering work, we
did not implement a full CPU version of GPUlog. How-
ever, we did implement twoGPUlog’s most computationally-
expensive phases: sort, merge and implemented them using
the latest version of Intel’s oneTBB SIMD library (which uses
CPU-specific vectorization) [19].
We ran both CPU and GPU implementations of sort and

merge on different sizes of randomly generated tuples with
two arities, collecting the total time of 100 runs. The results
are presented in Table 6. Overall, in all test cases, the GPU
version of both sort and merge functions is around 10x to
20x faster than the CPU version. We believe this is primarily
due to the significantly better memory bandwidth offered
by the GPU (1.5 TB/s vs. 0.19 TB/s). To investigate this, we

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, NetherlandsYihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth Kumar, & Kristopher Micinski

collected the buffer allocation and initialization times for
these two operations and listed them in the last column,
which shows the memory allocation and initialization of the
buffer to hold tuples used in the experiment. For all input
sizes, the A100 GPU is consistently 10x faster than the EPYC
7543. We note that the performance increases mirror the
memory bandwidth differences between the CPU and GPU;
indeed, because modern Datalog applications (such as CSPA)
are memory-bound, we conclude GPUs offer an attractive
implementation platform for modern Datalog engines.

7 Conclusion and Future Work

We presented GPUlog, the first GPU-based Datalog engine
able to achieve net-positive performance compared to SOTA
Datalog implementations. Our libraryGPUlog (implemented
both for CUDA and HIP) enables modern Datalog imple-
mentation techniques, namely compilation to relational al-
gebra, range-indexed iterated joins, and optimized 𝑛-way
joins. GPUlog is powered by the hash-indexed sorted ar-
ray (HISA), a novel data structure we developed to support
high-performance Datalog engines on the GPU. We then
used HISA to build GPUlog by employing two novel de-
sign points: temporarily materialized 𝑛-way joins and eager
buffer management. We have evaluated GPUlog extensively
compared to both CPU and GPU-based state-of-the-art; our
experimental results demonstrate improvements of up to
45× compared to an optimally-tuned CPU-based engine on
context-sensitive points-to analysis of PostgreSQL.

We notice recent work on running relational algebra and
Datalog on multi-node systems, scaling them to thousands
of nodes [14, 24, 25, 51] using fine-tuned MPI all-to-all com-
munication [10, 11, 35]. Following this trend, one of our
future projects is multi-node, multi-GPU programming co-
ordinated via MPI. Such an effort necessitates a heteroge-
neous decomposition of work across nodes while minimizing
communication. We plan to address this by leveraging the
coarse-grained (task-level) parallelism inherent in specific
applications. Additionally, we intend to extend GPUlog to
support monotonic aggregation and implement recent join
algorithms, such as free join [54].

8 Acknowledgement

This work was funded in part by NSF PPoSS planning and
large grants CCF-2316159 and CCF-2316157. We are thankful
to the ALCF’s Director’s Discretionary (DD) program for
providing us with compute hours to run our experiments
on the Polaris supercomputer and the Joint Laboratory for
System Evaluation (JLSE) located at the Argonne National
Laboratory. This material is based upon work supported by
the Defense Advanced Research Projects Agency (DARPA)
under Contract No. N66001-21-C-4023. Any opinions, find-
ings and conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily
reflect the views of DARPA.

Optimizing Datalog for the GPU ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
databases, volume 8. Addison-Wesley Reading, 1995.

[2] AMD. Hip documentation, 2024.
[3] Argonne Leadership Computing Facility. Aurora supercomputer, 2024.
[4] Muhammad A Awad, Saman Ashkiani, Rob Johnson, Martín Farach-

Colton, and John D Owens. Engineering a high-performance gpu
b-tree. In Proceedings of the 24th symposium on principles and practice
of parallel programming, pages 145–157, 2019.

[5] George Balatsouras and Yannis Smaragdakis. Structure-sensitive
points-to analysis for c and c++. In Static Analysis: 23rd International
Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings
23, pages 84–104. Springer, 2016.

[6] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming systems
languages and applications, pages 243–262, 2009.

[7] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative spec-
ification of sophisticated points-to analyses. In Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming systems
languages and applications, pages 243–262, 2009.

[8] Mihai Budiu, Tej Chajed, Frank McSherry, Leonid Ryzhyk, and Val
Tannen. Dbsp: Automatic incremental view maintenance for rich
query languages. Proc. VLDB Endow., 16(7):1601–1614, mar 2023.

[9] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1), dec 2011.

[10] Ke Fan, Thomas Gilray, Valerio Pascucci, Xuan Huang, Kristopher
Micinski, and Sidharth Kumar. Optimizing the bruck algorithm for
non-uniform all-to-all communication. In Proceedings of the 31st In-
ternational Symposium on High-Performance Parallel and Distributed
Computing, pages 172–184, 2022.

[11] Ke Fan, Steve Petruzza, Thomas Gilray, and Sidharth Kumar. Config-
urable algorithms for all-to-all collectives. In ISC High Performance
2024 Research Paper Proceedings (39th International Conference), pages
1–12. Prometeus GmbH, 2024.

[12] Zhiwei Fan, Jianqiao Zhu, Zuyu Zhang, Aws Albarghouthi, Paraschos
Koutris, and Jignesh M. Patel. Scaling-up in-memory datalog process-
ing: Observations and techniques. Proc. VLDB Endow., 12(6):695–708,
Feb 2019.

[13] Antonio Flores-Montoya and Eric Schulte. Datalog disassembly. In 29th
USENIX Security Symposium (USENIX Security 20), pages 1075–1092,
2020.

[14] Thomas Gilray, Sidharth Kumar, and Kristopher Micinski. Compil-
ing data-parallel datalog. In Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction, pages 23–35, 2021.

[15] Oded Green. Hashgraph—scalable hash tables using a sparse graph
data structure. ACM Trans. Parallel Comput., 8(2), jul 2021.

[16] Oded Green, Robert McColl, and David A Bader. Gpu merge path: a
gpu merging algorithm. In Proceedings of the 26th ACM international
conference on Supercomputing, pages 331–340, 2012.

[17] Todd J Green, Shan Shan Huang, Boon Thau Loo, Wenchao Zhou, et al.
Datalog and recursive query processing. Foundations and Trends® in
Databases, 5(2):105–195, 2013.

[18] Jiaqi Gu, Yugo H Watanabe, William A Mazza, Alexander Shkapsky,
Mohan Yang, Ling Ding, and Carlo Zaniolo. Rasql: Greater power and
performance for big data analytics with recursive-aggregate-sql on
spark. In Proceedings of the 2019 International Conference on Manage-
ment of Data, pages 467–484, 2019.

[19] Intel. oneAPI Threading Building Blocks (oneTBB). https://github.
com/oneapi-src/oneTBB, 2024.

[20] JEDEC. High Bandwidth Memory (HBM) DRAM. https://www.jedec.
org/document_search?search_api_views_fulltext=jesd235, 2021.

[21] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On syn-
thesis of program analyzers. In Computer Aided Verification: 28th

International Conference, CAV 2016, Toronto, ON, Canada, July 17-23,
2016, Proceedings, Part II 28, pages 422–430. Springer, 2016.

[22] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. Brie:
A specialized trie for concurrent datalog. In Proceedings of the 10th
International Workshop on Programming Models and Applications for
Multicores and Manycores, pages 31–40, 2019.

[23] Herbert Jordan, Pavle Subotić, David Zhao, and Bernhard Scholz. A
specialized b-tree for concurrent datalog evaluation. In Proceedings of
the 24th symposium on principles and practice of parallel programming,
pages 327–339, 2019.

[24] Sidharth Kumar and Thomas Gilray. Distributed relational algebra
at scale. In International Conference on High Performance Computing,
Data, and Analytics (HiPC). IEEE, volume 1, 2019.

[25] Sidharth Kumar and Thomas Gilray. Load-balancing parallel relational
algebra. In High Performance Computing: 35th International Conference,
ISC High Performance 2020, Frankfurt/Main, Germany, June 22–25, 2020,
Proceedings 35, pages 288–308. Springer, 2020.

[26] Monica S Lam, John Whaley, V Benjamin Livshits, Michael C Martin,
Dzintars Avots, Michael Carbin, and Christopher Unkel. Context-
sensitive program analysis as database queries. In Proceedings of the
twenty-fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 1–12, 2005.

[27] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large net-
work dataset collection. http://snap.stanford.edu/data, June 2014.

[28] Feifei Li, Dihan Cheng, Marios Hadjieleftheriou, George Kollios, and
Shang-Hua Teng. On trip planning queries in spatial databases. In
International symposium on spatial and temporal databases, pages 273–
290. Springer, 2005.

[29] Yuchen Li, Qiwei Zhu, Zheng Lyu, Zhongdong Huang, and Jianling
Sun. Dycuckoo: dynamic hash tables on gpus. In 2021 IEEE 37th
international conference on data engineering (ICDE), pages 744–755.
IEEE, 2021.

[30] David Maier, K Tuncay Tekle, Michael Kifer, and David S Warren. Dat-
alog: concepts, history, and outlook. In Declarative Logic Programming:
Theory, Systems, and Applications, pages 3–100. 2018.

[31] Carlos Alberto Martínez-Angeles, Inês Dutra, Vítor Santos Costa, and
Jorge Buenabad-Chávez. A datalog engine for gpus. In International
Conference on Applications of Declarative Programming and Knowledge
Management, pages 152–168. Springer, 2013.

[32] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael
Isard. Differential dataflow. In CIDR, 2013.

[33] Raymond J Mooney. Inductive logic programming for natural language
processing. In International conference on inductive logic programming,
pages 1–22. Springer, 1996.

[34] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul
Barham, and Martín Abadi. Naiad: A timely dataflow system. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP ’13, page 439–455, New York, NY, USA, 2013.
Association for Computing Machinery.

[35] Naeris Netterville, Ke Fan, Sidharth Kumar, and Thomas Gilray. A
visual guide to mpi all-to-all. In 2022 IEEE 29th International Confer-
ence on High Performance Computing, Data and Analytics Workshop
(HiPCW), pages 20–27. IEEE, 2022.

[36] Nvida. Thrust: The C++ Parallel Algorithms Library . https://nvidia.
github.io/cccl/thrust/, 2024.

[37] NVIDIA. CUDA C Programming Guide: SIMT. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/#simt-architecture, 2024.

[38] Oak Ridge National Laboratory. Aurora supercomputer, 2024.
[39] RAPIDS. RMM: RAPIDS Memory Manager. https://github.com/

rapidsai/rmm, 2024.
[40] RAPIDS Development Team. cuDF: Gpu dataframe library. https:

//github.com/rapidsai/cudf, 2021.
[41] Daniel Ritter and Till Westmann. Business network reconstruction

using datalog. In Pablo Barceló and Reinhard Pichler, editors, Datalog
in Academia and Industry, pages 148–152, Berlin, Heidelberg, 2012.

https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB
https://www.jedec.org/document_search?search_api_views_fulltext=jesd235
https://www.jedec.org/document_search?search_api_views_fulltext=jesd235
http://snap.stanford.edu/data
https://nvidia.github.io/cccl/thrust/
https://nvidia.github.io/cccl/thrust/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#simt-architecture
https://docs.nvidia.com/cuda/cuda-c-programming-guide/#simt-architecture
https://github.com/rapidsai/rmm
https://github.com/rapidsai/rmm
https://github.com/rapidsai/cudf
https://github.com/rapidsai/cudf

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, NetherlandsYihao Sun, Ahmedur Rahman Shovon, Thomas Gilray, Sidharth Kumar, & Kristopher Micinski

Springer Berlin Heidelberg.
[42] Arash Sahebolamri, Langston Barrett, Scott Moore, and Kristopher

Micinski. Bring your own data structures to datalog. Proc. ACM
Program. Lang., 7(OOPSLA2), oct 2023.

[43] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann.
On fast large-scale program analysis in datalog. In Proceedings of the
25th International Conference on Compiler Construction, CC 2016, page
196–206, New York, NY, USA, 2016. ACM.

[44] Jiwon Seo, Stephen Guo, and Monica S Lam. Socialite: Datalog exten-
sions for efficient social network analysis. In 2013 IEEE 29th Interna-
tional Conference on Data Engineering (ICDE), pages 278–289. IEEE,
2013.

[45] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu,
Tyson Condie, and Carlo Zaniolo. Big data analytics with datalog
queries on spark. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, page 1135–1149, New York, NY,
USA, 2016. Association for Computing Machinery.

[46] Ahmedur Rahman Shovon. Public github repository of GPUJoin. https:
//github.com/harp-lab/usenixATC23, 2023.

[47] Ahmedur Rahman Shovon, Landon Richard Dyken, Oded Green,
Thomas Gilray, and Sidharth Kumar. Accelerating datalog applica-
tions with cudf. In 2022 IEEE/ACM Workshop on Irregular Applications:
Architectures and Algorithms (IA3), pages 41–45. IEEE, 2022.

[48] Ahmedur Rahman Shovon, Thomas Gilray, Kristopher Micinski, and
Sidharth Kumar. Towards iterative relational algebra on the {GPU}.
In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages
1009–1016, 2023.

[49] Evgeny Skvortsov, Yilin Xia, and Bertram Ludäscher. Logica: Declara-
tive data science for mere mortals. In EDBT, pages 842–845, 2024.

[50] Pavle Subotić, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard
Scholz. Automatic index selection for large-scale datalog computation.

Proc. VLDB Endow., 12(2):141–153, oct 2018.
[51] Yihao Sun, Sidharth Kumar, Thomas Gilray, and Kristopher Micinski.

Communication-avoiding recursive aggregation. In 2023 IEEE Inter-
national Conference on Cluster Computing (CLUSTER), pages 197–208.
IEEE, 2023.

[52] Todd L Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal
join algorithm. In Proc. International Conference on Database Theory,
2014.

[53] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Harry Xu, and
Ardalan Amiri Sani. Graspan: A single-machine disk-based graph
system for interprocedural static analyses of large-scale systems code.
Proceedings of the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
2017.

[54] Yisu Remy Wang, Max Willsey, and Dan Suciu. Free join: Unifying
worst-case optimal and traditional joins. Proc. ACM Manag. Data, 1(2),
jun 2023.

[55] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Bax-
ter, Michael Garland, and Sudhakar Yalamanchili. Red fox: An ex-
ecution environment for relational query processing on gpus. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, pages 44–54, 2014.

[56] Jiacheng Wu, Jin Wang, and Carlo Zaniolo. Optimizing parallel re-
cursive datalog evaluation on multicore machines. In Proceedings
of the 2022 International Conference on Management of Data, pages
1433–1446, 2022.

[57] Hangdong Zhao, Shaleen Deep, Paraschos Koutris, Sudeepa Roy, and
Val Tannen. Evaluating datalog over semirings: A grounding-based
approach. Proceedings of the ACM on Management of Data, 2(2):1–26,
2024.

https://github.com/harp-lab/usenixATC23
https://github.com/harp-lab/usenixATC23

	Abstract
	1 Introduction
	2 Datalog and Declarative Analytics
	3 GPU Datalog: Challenges and Concerns
	4 The Hash-Indexed Sorted Array (HISA)
	4.1 Data Array
	4.2 Sorted Index Array
	4.3 Open-Addressing Hash Table

	5 GPUlog: GPU-powered datalog engine
	5.1 Evaluation of Datalog Programs
	5.2 Temporarily-Materialized n-way Joins
	5.3 Buffer Management and Amortized Allocation

	6 Evaluation
	6.1 Environment Setup
	6.2 Test Programs and Datasets
	6.3 Evaluating Eager Buffer Management
	6.4 GPUlog vs. SOTA GPU joins
	6.5 Context-Sensitive Program Analysis
	6.6 GPUlog Across Different Hardware

	7 Conclusion and Future Work
	8 Acknowledgement
	References

