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Abstract—Sparse matrices are a core component in many nu-
merical simulations, and their efficiency is essential to achieving
high performance. Dynamic sparse-matrix allocation (insertion)
can benefit a number of problems such as sparse-matrix fac-
torization, sparse-matrix-matrix addition, static analysis (e.g.,
points-to analysis), computing transitive closure, and other graph
algorithms. Existing sparse-matrix formats are poorly designed
to handle dynamic updates. The compressed sparse-row (CSR)
format is fully compact and must be rebuilt after each new
entry. Ellpack (ELL) stores a constant number of entries per
row, which allows for efficient insertion and sparse matrix-vector
multiplication (SpMV) but is memory inefficient and strictly
limits row size. The coordinate (COO) format stores a list of
entries and is efficient for both memory use and insertion time;
however, it is much less efficient at SpMV. Hybrid ellpack (HYB)
compromises by using a combination of ELL and COO but
degrades in performance as the COO portion fills up. Rows that
use the COO portion require it to be completely traversed during
every SpMV operation.

In this paper we present dynamic compressed sparse row
(DCSR), a sparse matrix format that allows for asynchronous
dynamic updates, and extend it to an improved SpMM operation.
Through the use of DCSR we demonstrate an improved sparse
matrix-matrix multiplication (SpMM) algorithm and evaluate it
using algebraic multigrid (AMG). AMG is a multigrid operation
in which the hierarchy of operators is created from the matrix
itself as opposed to the geometry of the mesh. This operation
can be expressed in terms of SpMM, SpMV, and primitive
parallel operations. DCSR provides significant performance im-
provements for SpMM through increased memory efficiency due
to asynchronous dynamic updates.

I. INTRODUCTION

Sparse matrix-vector multiply (SpMV), the workhorse op-
eration of many numerical simulations, has seen use in a wide
variety of areas such as data mining [17] and graph analytics
[13]. In scientific computing and numerical algorithms, a
majority of the total processing is frequently spent on SpMV
operations. Iterative computations such as the power method
and conjugate gradient are commonly used in numerical
simulations and require successive SpMV operations [30].
GPUs are increasingly used for computing these operations as
they are, in principle, highly parallelizable. GPUs have both a
high computational throughput and a high memory bandwidth.
Operations on sparse matrices are generally memory bound,
which makes the GPU a good target platform due to its higher
memory bandwidth compared to that of the CPU. However, it
is still difficult to attain high performance with sparse matri-
ces because of thread divergence and non-coalesced memory
accesses.

Some applications require dynamic updates to the matrix;
broadly construed, updates may include inserting or deleting

entries. Fully compressed formats such as compressed sparse
row (CSR) cannot handle these operations without rebuilding
the entire matrix. Rebuilding the matrix is orders of magnitude
more costly than performing an SpMV operation. The ellpack
(ELL) format allocates a fixed amount of space for each row,
allowing fast insertion of new entries and fast SpMV but
limits each row to a predetermined number of entries and can
be highly memory inefficient. The coordinate (COO) format
stores a list of entries and permits both efficient memory use
and fast dynamic updates but is unordered and slow to perform
SpMV and SpMM operations. The hybrid-ellpack (HYB)
format attempts a compromise between these by combining
an ELL matrix with a COO matrix for overflow. Operations
over rows may require examination of this overflow matrix
however and efficiency suffers.

Matrix representations of sparse graphs sometimes exhibit
a power-law distribution (when the number of nodes with
a given number of edges scales as a power of the number
of edges). This distribution results in a long tail in which a
few rows have a relatively high number of entries but the
rest have a relatively low number. Real-world phenomena
often exhibits the power-law distribution. For example, their
corresponding matrices can represent adjacency graphs, web
communication, and finite-state simulations. Such a matrix is
also the pathological case for memory efficiency in the ELL
format and requires significant use of the COO portion of
a HYB matrix, making neither particularly well suited for
dynamic sparse-graph applications.

One motivating application for our work is control-flow
analysis (CFA), a general approach to static program analysis
of higher-order languages [31], [25]. These algorithms use
an approximate interpretation of their target code to yield an
upper bound on the propagation of data and control through a
program across all possible actual executions. A CFA involves
a series of increasing operations on a graph (extending it with
nodes and edges), terminating when a fixed point is reached
(a steady state where the analysis is self-consistent).

Recent work has shown how to implement this kind of
static analysis as linear-algebraic operations on the sparse-
matrix representation of a function [14], [28]. Other recent
work shows how to implement an inclusion-based points-to
analysis of C on the GPU by applying a set of semantic
rules to the adjacency matrix of a sparse-graph [24]. These
algorithms may be likened to finding the transitive closure
of a graph encoded as an adjacency matrix. The matrix is
repeatedly extended with new entries derived from SpMV
until a fixed point is reached (no more edges need to be
accumulated). These approaches to static analysis on the GPU
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are very different; both however, require performant sparse-
matrix operations and dynamic insertion of new entries.

Sparse-matrix factorization is the essential step in direct
methods for solving linear systems. This process is highly
time and memory consuming, and could benefit from efficient
dynamic updates to the factors being built or reduced. Existing
methods for LU -decomposition [16] and Cholesky decom-
position [3] make frequent use of sparse-matrix addition to
union components of the overall workload during a recursive
merging step. This union of matrices is done by allocating a
fresh matrix all at once or by proprietary ad-hoc methods,
which have gone undisclosed in the literature. Our work
provides a general matrix format that allows such merging
steps to incrementally extend an existing matrix.

Sparse matrix-matrix multiplication (SpMM) is another ap-
plication for efficient dynamic updates. Existing approaches
use an intermediate COO format matrix to compile a list
of partial results before building the final product. A more
efficient approach is to dynamically extend the final product
with these intermediate results as they are asynchronously
accumulated. Algebraic multigrid can be formulated in terms
of SpMV, SpMM, and primitive vector operations, and this is
often the preferred method on the GPU [4].

We review existing matrix formats and present our al-
ternative approach to dynamic matrix allocation that allows
an existing matrix to be modified arbitrarily in-place for
certain operations. We also demonstrate that operations such
as SpMM, which cannot be done in-place, still benefit greatly
from our dynamic format due to improved memory efficiency.
Dynamic compressed sparse row (DCSR) has been designed
for easy conversion with standard CSR, fast dynamic updates,
and fast SpMV.

This article expands on our proceedings paper [20] with a
more detailed exposition and with applications to improved
SpMM and AMG algorithms. Specifically, we contribute:
• An extension of our DCSR format to an algorithm

for SpMM which exploits efficient dynamic updates
to process and update rows asynchronously, and a
comparison to standard SpMM operations performed
using CSR and COO matrices.

• Experiments demonstrating the efficacy of this im-
proved algorithm directly, and an evaluation of its
impact on Algebraic Multigrid (AMG), an application
commonly formulated using SpMM.

In Section II we provide background information and de-
scribe commonly used sparse matrix formats. Section III de-
scribes our dynamic allocation method and the DCSR format.
In addition it provides pseudo code for our implementation
on the GPU. Section IV gives experimental results for SpMM
and AMG benchmarks. Finally, we describe future work and
conclude in Section V.

II. BACKGROUND

In this paper we are concerned with dynamic updates to
sparse matrices. As SpMV is arguably the most important
sparse-matrix operation, we want to maintain efficient times
for the problem Ax = y. A major goal of sparse-matrix

formats is to reduce irregularity in the memory accesses. We
provide a brief overview of some of the most commonly used
sparse-matrix formats.

The coordinate (COO) format is the simplest sparse-matrix
format. It represents a matrix with three vectors holding the
row indices, column indices, and values for all non-zero entries
in the matrix. The entries within a COO format must be sorted
by row in order to efficiently perform an SpMV operation.
SpMV operations are conducted in parallel through segmented
reductions over the length of the arrays. Tracking which thread
has processed the final entry in a row requires explicit inter-
thread communication.

The compressed sparse row/column (CSR/CSC) formats
have arrays that fully store two of the three sets, either the
column indices or the row indices in addition to the values.
Either the rows or columns (in CSR or CSC, respectively)
are compressed to store only the offsets into the other two
arrays. For CSR, entry i and i + 1 in the row offsets array
will store the starting and ending offsets for row i. CSR has
been shown to be one of the best formats in terms of memory
usage and SpMV efficiency due to its fully compressed nature
and has become widely used [15]. CSR has a greater memory
efficiency than COO, which is a significant factor in speeding
up SpMV operations due to decreased memory bandwidth
usage.

The ellpack (ELL) format uses two arrays, each of size
m × k (where m is the number of rows and k is a fixed
width), to store the column indices and the values of the matrix
[11], [12]. These arrays are stored in column-major order to
allow for efficient parallel access across rows. This format is
best suited for matrices that have a fixed number of entries
per row. Allocating enough memory in each row to store the
entire matrix is prohibitively expensive for ELL when a matrix
contains even one long row.

The hybrid-ellpack (HYB) format offers a compromise by
using a combination of ELL and COO. It stores as many
entries as possible in an ELL portion, and the overflow from
rows with a number of entries greater than the fixed ELL
width is stored in a COO portion. ELL and HYB have become
popular on SIMD architectures due to the ability of thread
warps to look through consecutive rows in an efficient parallel
manner [5].

A number of other specialized sparse-matrix formats have
been developed, including jagged diagonal storage (JDS),
block diagonal (BDIA), skyline storage (SKS), tiled COO
(TCOO), block ELL (BELL), and sliced-ELL (SELL) [26],
all of which offer improved performance for specific matrix
types. Blocked variants of these and other formats work by
storing localized entries in blocks for better data locality and
a reduction in index storage. “Cocktail” frameworks that mix
and match matrix formats to fit specific subsets of the matrix
have been developed, but they require significant preprocessing
and are not easily modified dynamically [32]. Garland et al.
have provided detailed reviews of the most common sparse
matrix formats [11], [12], [33], as well as an analysis of their
performance on throughput-oriented many-core processors [6].

Block formats such as BRC [2] and BCCOO [35] have
limited ability to add in additional entries. BRC can add new
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entries only if those entries correspond to zeros within blocks
that have been stored. BCCOO can handle the addition of
new entries, but it suffers from many of the same problems as
COO. Also, new insertions will not always follow a blocked
structure, so additional blocks may be sparse, which lowers
memory efficiency.

Many sparse matrix formats are fully compressed and do not
allow additional entries to be added to the matrix dynamically.
Adding additional entries to a CSR matrix requires rebuilding
the entire matrix, since there is no free space between entries.
Of existing formats, COO is the most amenable to dynamic
updates because new entries can be placed at the end of the
data structure. However, updating a COO matrix in parallel
requires atomic operations to keep track of currently available
memory locations. The ELL/HYB formats allow for some
additional entries to be added in a limited fashion. ELL cannot
add in more entries per row than the given width of the
matrix, and while the HYB format has a COO matrix to handle
overflow from the ELL portion, it cannot be efficiently updated
in parallel since atomic operations are required and the COO
portion must maintain the sorted property.

A. Sparse Matrix Algorithms on the GPU

A great deal of research has been devoted to improving the
efficiency of SpMV, which has been studied on both multi-
core and many-core architectures. Williams et al. demonstrated
the efficacy of using architecture-specific data structures to
optimize performance [34], [22]. Since SpMV is a bandwidth-
limited operation, research has also produced other methods,
such as automatic tuning, blocking, and tiling, to increase
cache hit rates and decrease bandwidth usage [36], [9], [29].

The two most common CSR SpMV algorithms are CSR-
scalar and CSR-vector. CSR-scalar assigns one thread per row
and CSR-vector assigns a vector of threads to each row. On
SIMD architectures the vector size generally never exceeds a
full warp (to avoid explicit synchronization between threads).
A vectorized approach allows for more efficient coalesced
memory accesses. A hybrid approach has been shown to
be effective. This method selectively picks between CSR-
scalar and CSR-vector based on the row length [15]. Adaptive
algorithms that group rows together by length and assign
separate kernels to each group have also been explored [1].

Graph applications often use sparse binary adjacency ma-
trices to represent graphs and translate graph operations to
linear algebraic operations [18]. Finding the transitive closure
of a graph can be done through repeated multiplication of
its adjacency matrix. The transitive closure of an adjacency
matrix R calculates R+ = ∪

i∈{1,2,3,...}
Ri, where Ri is the ith power

of the matrix. The result is Ri having a non-zero between any
pair of nodes connected by a path of length i. Thus, the union
(addition/binary-or) of all R, . . . Rn will have a non-zero entry
for every pair of nodes that are connected by a path of length
≤ n. This process of unioning successive powers of R can
be continued until a fixed point is reached. All nodes that
are connected by a path of any length will be marked in the
matrix.

Bandwidth limited sparse matrix-matrix operations such as
sparse matrix-matrix addition A+B = C and sparse matrix-
matrix multiplication AB = C remain difficult to compute
efficiently. These operations require creating a new sparse ma-
trix C whose entries and sparsity will depend on the sparsity
patterns of A and B, and often will have a differing number of
elements than either. Current implementations generally look
globally at both matrices and find the intersection patterns
using temporary workspace memory, after which the new
matrix C can be generated [7], [19]. This often involves format
conversions that consume additional time and memory.

III. DYNAMIC ALLOCATION

We present our dynamic sparse-matrix allocation method
that allows for efficient dynamic updates while still maintain-
ing fast SpMV times [20]. Our dynamic allocation uses a row
offset array, representing a dense array of ordered rows, and
for each a fixed number of segment offsets. The column indices
and values are stored in arrays that are logically divided into
these data segments in the same way that CSR row offsets
partition the column indices and values. Each such segment
is a contiguous portion of memory that stores entries within
a row. Segments may contain more space than entries to
allow for future insertions. The contiguous layout of entries
within the set of segments for a given row is equivalent to the
corresponding row in CSR format. In the following subsection
we illustrate how dynamic allocation is performed, after which
we provide details of how DCSR operations are implemented.
We then present our implementation of an improved SpMM
algorithm that utilizes DCSR for asynchronous dynamic writes
to the resulting C matrix.
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Fig. 1: Comparison of CSR, DCSR, and HYB formats.
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Algorithm 1: Allocate Segments
Input: sizes, offsets, Aj, Ax, B offsets, B cols, B vals
Output: sizes, offsets, Aj, Ax

1 row ← vid ; // vector ID
2 while row < n rows do
3 sid← 0 ; // segment index
4 rl← sizes[row] ; // row length
5 idx← 0 ; // thread row index
6 start← offsets[row ∗ 2] ; // starting

segment offset
7 end← offsets[row ∗ 2 + 1] ; // ending

segment offset
8 free mem← 0;
9 B start←B offsets[row ∗ 2];

10 B end←B offsets[row ∗ 2 + 1];
11 rlB ← B row end−B row start;
12 if rlA ≥ 0 then
13 while A idx < rlA do
14 idx← idx+ (A end−A start);
15 if idx < rlA then
16 sid← sid+ 1;
17 A start← offsets[sid∗pitch+row ∗ 2];
18 A end← offsets[sid∗pitch+row ∗ 2 + 1];

19 idx← A end+ rlA− idx;

20 else
21 idx← A start;

22 free mem← A end−A start;
23 if lane = 0 AND free mem < rlB AND rlB > 0

then
// allocate new space

24 size← rlB − free mem+ α;
25 addr ← atomicAdd(sizes[n rows], size);

// allocate new row segment
26 offsets[(sid+ 1)*pitch + row ∗ 2]← addr;
27 offsets[(sid+ 1)*pitch +

row ∗ 2 + 1]← addr + size;

// Allocate new entries (Algorithm
2)

28 Insert Elements();
29 row ← row + num vectors;

A. Dynamic CSR

Initializing the matrix can be done in one of two ways.
Either a matrix can be loaded from another format (e.g., COO
or CSR) or the matrix can be initialized as blank. In the
latter case, each row is assigned an initial number of entries
(an initial segment size) in the column indices and values
arrays. The row offset array is initialized with space for k
segment offset pairs, with either no allocated segments or a
single allocated segment of size µ per row. The latter case
will consume the same amount of memory as an ELL matrix
with a row width of µ, except in row-major order instead
of column-major order. To allow for dynamic allocation we
maintain a larger memory buffer than needed and use simple

bump-pointer allocation to add new segments. This allocation
pointer is set to the end of the currently used space (rows×µ
in the case of a new matrix). A maximum size of memory
buffer for the columns and values arrays is specified by the
user. Figure 1 provides a illustrative comparison of CSR, HYB,
and DCSR formats.

The format consists of four arrays for column indices,
values, row offsets, and row sizes, in addition to a memory
allocation pointer. The row offsets array functions in a similar
manner to that of its CSR counterpart, except that both a
beginning and ending offset are stored and space exists for
up to k such pairs per row. This table is encoded as a strided
array where the starting and ending offsets of segment k in
row i are indexed by (i∗2+k∗pitch) and (i∗2+k∗pitch+1),
respectively. The pitch may be defined as a value convenient
for cache performance such that pitch ≥ 2 ∗ rows. Each
set of offsets for a given segment lies within a different
cache line, which serves to increase memory aligned accesses.
The number of memory segment offset pairs (the max k) is
an adjustable parameter specified at matrix construction. The
column indices and values correspond 1:1, just as in CSR.
Unlike CSR, however, there may be more than one memory
segment assigned to a given row, and the segments need not
be contiguous. As the last segment for a row may not be full,
the actual row sizes are maintained so the used portion of each
segment is known.

Explicitly storing row sizes allows for optimization tech-
niques such as the adaptive binning strategy used in adaptive
CSR (ACSR)[1]. This optimization implements customized
kernels to process bins of specified row-lengths. We make
use of this optimization by binning rows together based on
row size before SpMV or SpMM operations. Each row is
given a bin label based on its size (1, 2-3, 4-8, 9-16, 17-
32, . . . ). A permuted set of row indices is created by sorting
according to these bin labels. Bin-specific kernels are launched
with these permuted indices on separate streams which allows
each kernel to easily access the rows that it needs to process
without scanning over the matrix.

When inserting new elements within a row, the last allocated
segment for that row is located and if space is available
the new elements are inserted in a contiguous fashion just
after current entries. If that segment does not have enough
room, a new segment will be allocated with the appropriate
size plus an additional amount α. The α value represents
additional “slack space” and allows for a greater number of
entries to be inserted without the creation of a new segment.
If dynamic updates follow a power-law distribution, there will
be a higher probability of additional entries being inserted
into longer rows. Although we experimented with setting α
to be a factor of the previous segment size, for our tests we
settled on a value of µ (average row size of matrix). When
a new segment is allocated, the memory allocation pointer is
atomically increased by the size of the new segment. A hard
limit on these additions, before defragmentation is required,
is fixed by the number of segments k. The defragmentation
operation always reduces the number of segments in each row
to one, which allows the format to scale to an arbitrary number
of allocations.
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Algorithm 2: Insert Elements
Input: sizes, offsets, Aj, Ax, B cols, B vals
Output: sizes, Aj, Ax

1 B idx← B start+lane ; // add thread lane
2 while B idx < B end do
3 if idx ≥ A end then
4 pos← idx−A end;
5 sid← sid+ 1;
6 A start← offsets[sid∗pitch+row ∗ 2];
7 A end← offsets[sid∗pitch+row ∗ 2 + 1];
8 idx← A start+ pos;

9 Aj[idx]← B cols[B idx];
10 Ax[idx]← B vals[B idx];
11 B idx← B idx+ VECTOR SIZE;
12 idx← idx+ VECTOR SIZE;

13 if lane = 0 then
14 sizes[row]← sizes[row] + rlB;

Algorithm 1 provides pseudo-code illustrating new segment
allocation. This allocation function can be parallelized across
rows, as each vector of threads will execute this function on
a different row. Within a row, a vector of threads operate
together to add new elements into matrix A from an array of
values B (B offsets, B cols, B vals). The segments could be
of variable length, so the total size is computed by looping over
the segments and summing the differences of the starting and
ending offsets (A start, A end). The current available memory
is calculated by computing the difference of the final segment
ending offset and index of the last element (A end − A start).
If there is enough room the elements are inserted into the
remaining space, otherwise a new segment must be allocated.
This is performed by atomically incrementing the memory
offset pointer to allocate a new segment of memory of size
equal to new elements minus the remaining free space plus
an α value. The returned address addr is the beginning offset
of the new segment of size size. Afterward, the new elements
are inserted via Algorithm 2.

When inserting new elements into the matrix, it is possible
that duplicate non-zero entries (i.e., two or more entries with
the same row and column index) will be added. Duplicate
entries are handled in one of two ways. The first method is to
simply let them accumulate, which does not pose a problem for
many operations. SpMV operations are tolerant of duplicate
entries due to the distributive property of the inner product and
will yield the same result to within floating point tolerance.
For binary matrices the row-vector inner products will produce
the same result irrespective of duplicate non-zeros. A second
solution is to perform a segmented reduction on the entries
after sorting by row and column, which combines all entries
with matching row and column indices into a single entry.
This full reduction is generally not needed when performing
only SpMV and addition operations. Sparse matrix-matrix
multiplication (SpMM) operations may cause significant fill-in
which would require such a reduction to be performed. In our
SpMV tests we let the values accumulate for all formats as

Algorithm 3: DCSR SpMV
Input: sizes, offsets, Aj, Ax, x, y
Output: y

1 tid← thread index ; // thread ID
2 lane← tid % V ec Size ; // lane ID
3 vid← tid / V ec Size ; // vector ID
4 for row ← vid to num rows, row += num vecs do
5 idx← 0 ; // thread row index
6 rl← sizes[row] ; // row length
7 sid← 0 ; // segment index
8 while idx < rl do
9 start← offsets[sid∗pitch + row ∗ 2];

10 end← offsets[sid∗pitch + row ∗ 2 + 1];
/* accumulate local sums */

11 for j ← start to end, j += V ec Size do
12 sum += Ax[j] * x[Aj[j]];

13 idx += (end - start);

14 y[row] = sum;

Algorithm 4: Defragment DCSR
Input: sizes, offsets, Aj, Ax
Output: offsets, Aj, Ax
/* prefix sum on row sizes */

1 exclusive scan(sizes, temp offsets);
2 new T cols(size(Aj)), new T vals(size(Ax));
3 CompactIndices(T cols, T vals, temp offsets, Aj, Ax,

offsets, sizes);
/* shallow copy, old arrays deleted */

4 Aj = &T cols, Ax = &T vals;
5 SetRowOffsets(offsets, sizes, temp offsets);

they do not hinder the SpMV operations that are performed.
Algorithm 2 provides pseudo-code for the insertion oper-

ation. A vector of threads will operate together to add the
elements into the segments. After a segment is full, the next
segment indices are retrieved from the offsets table whose
starting and ending offsets are A start and A end, respectively.
Column indices and values are copied from B cols and B vals
to their respective locations in the A matrix. After this is
complete, a single thread will update the row sizes array to
reflect the new size.

An SpMV operation works as follows. The first pair of
segment offsets is fetched. The entries within the correspond-
ing segment are multiplied by the appropriate values in x
according to the algorithm being used (CSR-scalar, CSR-
vector, etc.). If the row size is greater than the capacity of the
current memory segment, the next pair of offsets is fetched.
If the size of the current segment plus the running sum of the
previous segment sizes is greater than or equal to the row size,
this is the final segment of the row. In case the final segment
is not full, the location of the last entry can be determined
by the difference of the row size and the running sum. This
process continues until the entire row has been read.

As the matrix accumulates more segments, SpMV perfor-
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Fig. 2: Illustration of insertion and defragmentation operations
with DCSR.

mance decreases slightly. A fixed number of segments also
means this process cannot continue forever. Our solution to
both problems is to implement a defragmentation operation
that compacts all the entries within the column indices and
values arrays, eliminating empty space. This defragmentation
step combines all the segments in a row into a single segment
that compactly stores the entire row. This operation may be
invoked periodically, or more conservatively when a row has
reached its maximum capacity of segments. In practice we do
the latter and set a flag when any row reaches its maximum
segment count. At this point we consider defragmentation to
be required. Algorithm 3 illustrates the SpMV operation. This
is performed in a similar fashion to CSR-vector, except that
there is an outer loop over the segments.

Defragmentation performs the equivalent to a sort by row
operation on the entries of the matrix; we formulated a method
that does not require an actual sort and is significantly faster
than doing so. Since we explicitly store row sizes, we perform
a prefix-sum operation on them to calculate the new row
offsets in a compacted CSR form. The entries are then shuffled
from their current indices to their new indices in newly
allocated column indices and values buffers, after which we set
a pointer in our data structure to these new arrays and free the
old buffers (shallow copy). By using the knowledge of the row
sizes to compute resulting offsets and indices, we eliminate
the need to do any comparisons in this operation, which
greatly improves performance. The defragmentation process
is described by Algorithm 4.

Figure 2 illustrates an example of inserting new elements
into a DCSR matrix. Initially, the matrix has four populated
rows with the memory allocation pointer being 16. Row 0
can insert 1 additional entry in its current segment before a
new segment would need to be allocated. Rows 1 and 2 have
enough room for two additional entries, but row 3 is full.
Figure 2 shows a set of new entries that are inserted into rows
0, 2, and 3. In this case a new segment of size 4 is allocated
for row 0 and row 3. The additional segments need not be
consecutive nor in order of row since the exact offsets are
stored for each segment. Finally, the defragmentation operation
computes new segment offsets from the row sizes. The entries
are shuffled to their new indices, which results in a single
compacted segment for each row.

As CSR is the most commonly used sparse matrix format,
we designed DCSR to be compatible with CSR algorithms and
to allow for easy conversion between the formats. Minimal
overhead is required to convert from CSR to DCSR and vice
versa. When converting from CSR to DCSR, the column
indices and values arrays are copied directly. For the row
offsets array, the ith element is copied to indices i ∗ 2− 1 and
i ∗ 2 for all elements except the first and last one. A simple
subtraction must be performed to calculate the row sizes from
the row offsets. Converting back is equally simple, assuming
the matrix is first defragmented; the column indices and values
arrays are copied back, and the starting segment offset from
each row is copied into the row offsets array.

B. Sparse Matrix-Matrix Multiplication (SpMM)

It is a difficult task to efficiently compute C = AB for
sparse matrices in parallel. The sequential sparse matrix-
matrix multiplication algorithm is not suitable for fine-grained
parallelization. Sequential algorithms are efficient, but they
rely on a large amount of (per thread) temporary storage.
Specifically, to compute the sparse product C = AB, the
sequential methods use O(N) additional storage, where N
is the number of columns in C. The parallel approach to
sparse matrix-matrix multiplication is formulated in terms of
highly scalable parallel primitives with no such limitations.
As a result, a straightforward parallelization of the sequential
scheme requires O(n) storage per thread, which is not possible
when using tens of thousands of independent threads of
execution. Although it is possible to construct variations of the
sequential method with lower per-thread storage requirements,
any method that operates on the granularity of matrix rows
(i.e., distributing matrix rows over threads), requires a non-
trivial amount of per-thread state and suffers load imbalances
for certain input [4].

The standard algorithm for parallel SpMM that exposes fine-
grained parallelism is:

1) Expansion of A ∗ B into an intermediate coordinate
format T .

2) Sorting of T by row and column indices to form T̂ .
3) Compression of T̂ by summing duplicate values for each

matrix entry.
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Example 1: T and T̂ are given for C = AB,
where

A =

1 0 3
2 2 0
0 7 9

, B =

4 3 7
0 5 0
2 0 8

,

C =

10 3 31
8 16 14
18 35 72



T =



0, 0, 4.0
0, 1, 3.0
0, 2, 7.0
0, 0, 6.0
0, 2, 24.0
1, 0, 8.0
1, 1, 6.0
1, 2, 14.0
1, 1, 10.0
2, 1, 35.0
2, 0, 18.0
2, 2, 72.0



T̂ =



0, 0, 4.0
0, 0, 6.0
0, 1, 3.0
0, 2, 7.0
0, 2, 24.0
1, 0, 8.0
1, 1, 6.0
1, 1, 10.0
1, 2, 14.0
2, 0, 18.0
2, 1, 35.0
2, 2, 72.0


All three stages of the algorithm expose fine-grained paral-

lelism that the GPU can take advantage of. The algorithm can
be formulated in terms of efficient data-parallel computations
— gather, scatter, scan, sort, etc. Like the sequential algorithm,
this formulation is work efficient. It computes the exact
number of partial products required for each non-zero without
performing any additional operations with zero entries. It has
the same computational complexity as the sequential method
O(nnz(T )). The complexity is proportional to the size of the
intermediate format T , and the work required at each stage is
linear with respect to T . This process results in a relatively
even load balancing across the GPU regardless of the sparsity
patterns of the input matrices.

A limitation of this method is that the memory required to
store the intermediate format is potentially large. If A and B
are both square, n×n matrices with exactly K entries per row,
then O(nK2) bytes of memory are needed to store T. Since the
input matrices are generally large themselves (O(nK) bytes),
it is not always possible to store a K-times larger intermediate
result in memory. In the limit, if A and B are dense matrices
(stored in sparse format), then O(n3) storage is required.
In such a case the matrix-matrix multiplication C = AB
can be decomposed into several smaller operations that are
computed in a workspace of bounded size. The resulting slices
are then concatenated together to produce the final result.
This technique introduces some overhead, but in practice it is
relatively small as the workspace can be sized appropriately
to saturate the device.

Our implementation of SpMM follows the same principles
as the general algorithm, but we assign specialized kernels
to process rows grouped by size. This algorithm allows for
a more efficient use of shared memory when performing the
sort and reduction operations. DCSR allows for asynchronous
dynamic memory allocations when storing the rows products
into C. This property of DCSR allows computation of the rows
to be handled asynchronously. In the standard algorithm the

result of each previous row is required to know the offset when
writing the final result into C. We precompute the number
of partial products in row i as follows. For each element
ai,j in row i of A, the number of entries in row j of B
are summed. This value is needed in order to appropriately
allocate temporary workspace for the sorting and reduction
operations. Specific kernels are then assigned based on this
row size, to process rows of length 1-32, 33-64, 65-128, 129-
256, 257-512, 513-1024, 1025-2048, and 2049+.

The kernels process a row by computing the partial prod-
ucts, sorting them by column index, and reducing them before
storing them in the resulting C matrix. Since this is done on a
per row basis, the row is implicit and we need only store the
column indices and values for the sorting and reduction phases.
For all kernels except the 2049+ kernel, the operations are
computed within shared memory on the GPU, which provides
a significant performance improvement over global memory.
For the 2049+ kernel we use dynamic parallelism to assign a
compute kernel to each row, which performs these operations
using global memory.

IV. EXPERIMENTAL RESULTS

To benchmark SpMV, SpMM, update, and conversion per-
formance, we used a node with an Intel Xeon E5-2640
processor running at 2.50GHz, 128GB of memory, and a
NVIDIA Tesla K20c GPU. We compiled using g++ 4.7.2,
CUDA 7.5, CUSP 0.5.1, and Thrust 1.8.1, comparing our
method against modern implementations in CUSP [7] and
cuSPARSE [27]. Table I provides a list of the matrices that we
used in our tests as well as their sizes, number of non-zeros,
and row-entry distributions. All the matrices can be found in
the University of Florida sparse-matrix database [10].

Memory consumption is a major concern for sparse-matrix
formats, as one of the primary reasons for eliminating the
storage of zeros is to reduce the memory footprint. The ELL
component of HYB is best suited to store rows with an equal
number of entries. If there is a large variance in row size,
much of the ELL portion may end up storing zeros, which is
inefficient. We provide a comparison of memory consumption
for HYB, DCSR (using 2, 3, and 4 segments), and CSR
formats in Table II. We compute the storage size of the HYB
format using an ELL width equal to the average number of
non-zeros per row (µ) for the given matrix. CSR has the
smallest memory footprint since its row indices have been
compressed to the number of rows in the matrix. We see
that DCSR has a significantly smaller memory footprint in
almost all test cases. Test cases such as AMA and DBL have
lower memory consumption for HYB than for DCSR (with 3
and 4 segments), because these matrices have a low row size
variance. DCSR with 4 segments uses 20% less memory on
average than HYB.

Conversion times between formats are often a key factor
when determining the efficacy of a particular format. High
conversion times can be a significant hindrance to efficient
performance. Architecture-specific formats may provide bet-
ter performance, but unless the rest of the code base uses
that format, the conversion time must be accounted for. We
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Matrix Abbr. NNZ Rows \Cols µ \σ \Max
amazon-2008 AMA 5M 735K 7 \ 4 \ 10

cnr-2000 CNR 3M 325K 9 \ 21 \ 2716
dblp-2010 DBL 807K 326K 2 \ 4 \ 154

enron ENR 276K 69K 3 \ 28 \ 1392
eu-2005 EU2 19M 862K 22 \ 29 \ 6985

flickr FLI 9M 820K 11 \ 87 \ 10K
hollywood-2009 HOL 57M 1139K 50 \ 160 \ 6689

in-2004 IN2 16M 1382K 12 \ 37 \ 7753
indochina-2004 IND 194M 7414K 26 \ 216 \ 6985

internet INT 207K 124K 1 \ 4 \ 138
kron-18 KRO 10M 262K 40 \ 261 \ 29K

ljournal-2008 LJO 79M 5363K 14 \ 37 \ 2469
rail4284 RAL 11M 4K \ 1M 2633 \ 4K \ 56K

soc-LiveJournal1 SOC 68M 4847K 14 \ 35 \ 20K
webbase-1M WEB 3M 1000K 3 \ 25 \ 4700

wikipedia-2005 WIK 19M 1634K 12 \ 31 \ 4970

TABLE I: Matrices used in tests. NNZ: total number of non-
zeros, µ: average row size, σ: standard deviation of row sizes,
Max: maximum row size

Matrix HYB size DCSR DCSR DCSR CSR
2 segs. 3 segs. 4 segs.

AMA 54M 0.924 1.026 1.128 0.77
CNR 47M 0.626 0.679 0.732 0.547
DBL 12M 0.86 1.052 1.245 0.572
ENR 4M 0.653 0.762 0.871 0.489
EU2 236M 0.675 0.703 0.731 0.633
FLI 160M 0.546 0.585 0.624 0.487

HOL 859M 0.531 0.541 0.551 0.516
IN2 229M 0.654 0.7 0.746 0.585
IND 2791M 0.571 0.591 0.612 0.541
INT 4M 0.761 0.969 1.177 0.449
KRO 171M 0.493 0.505 0.516 0.475
LJO 1152M 0.594 0.63 0.665 0.541
RAL 149M 0.577 0.577 0.577 0.576
SOC 1009M 0.595 0.631 0.668 0.54
WEB 40M 0.966 1.155 1.344 0.682
WIK 276M 0.635 0.68 0.725 0.567

TABLE II: Comparison of memory consumption between
HYB, CSR, and DCSR formats. Size of HYB is listed in bytes
(using ELL width of µ), and sizes for DCSR and CSR are
listed as a percent of the HYB size.

provide the overhead required to convert to and from CSR
and COO matrices in Table III. The conversion times have
been normalized against the time required to copy CSR →
CSR. The conversion times to DCSR are only slightly higher
compared to that of CSR. HYB requires significant overhead
as the entries must first be distributed throughout the ELL
portion and the remaining overflow entries distributed into the
COO portion.

A. Matrix Updates

To measure the speed of dynamic updates, we ran two
series of tests, which involved streaming updates and iterative
updates. In the streaming updates test, we incrementally build
up the matrix by continuously inserting new entries. The
elements are first buffered into three arrays, representing the
rows indices, column indices, and values. We initialize the
matrix sizes according to the average number of non-zeros
for the given input. The entries are then added in a streaming
parallel fashion to the matrices.

From COO COO COO CSR CSR DCSR
To CSR DCSR HYB DCSR HYB CSR

AMA 2.93 3.03 9.22 1.06 9.25 0.9
CNR 2.24 2.62 14.84 1.04 13.62 0.87
DBL 4.34 5.74 18.07 1.17 16.83 1.1
ENR 5.56 5.95 27.15 1.29 26.95 1.14
EU2 2.1 2.29 16.08 1.06 15.67 0.99
FLI 2.13 2.5 23.29 1.06 19.74 0.96

HOL 1.82 1.9 20.37 1.01 20.3 0.99
IN2 2.15 2.42 18.12 1.06 18.15 0.98
IND 1.93 1.98 ∞ 1.03 ∞ 1.01
INT 12.07 13.74 21.38 1.3 15.12 1.0
KRO 1.78 2.09 24.01 1.0 20.14 0.91
LJO 2.09 2.19 19.96 1.02 19.97 0.98
RAL 1.73 2.03 20.67 1.0 17.97 0.91
SOC 2.22 2.35 20.47 1.06 20.41 1.01
WEB 2.89 3.19 11.45 1.16 11.56 0.86
WIK 2.18 2.42 20.13 1.07 20.11 0.98

TABLE III: Comparison of relative conversion times. Conver-
sions are normalized against time to copy CSR→CSR.

Updating a HYB matrix first requires checking the ELL
portion, and if the row in question is full, inserting the
new entry into the COO portion. Any updates to the COO
portion require atomic operations to ensure synchronous writes
between multiple threads. These atomic updates are prohibitive
for fast parallel updates as all threads are contending to insert
entries onto the end of the COO matrix.

Updating a DCSR matrix requires finding the last occupied
(current) segment within a row. If that segment is not full,
the new entry is added into it and the row size is increased.
When the current segment for a row fills up, a new segment
is allocated dynamically. Since atomic operations are required
only for the allocation of new segments, and not for each
individual element, synchronization overhead is kept low. By
allowing for dynamically sized slack space within a row,
we dramatically reduce the number of atomic operations that
are required to allocate new entries. In this way, DCSR was
designed to be updated in an efficient parallel manner.

The number of segments, initial row width, and α value
can be tuned for the problem to give a reasonable limit on
updates. In our tests we used four segments and an α value of
µ (average row size of the matrix). When a row nears its limit,
a defragmentation is required in order to reduce that row to a
single segment.

Figure 3 provides the results of our iterative and streaming
matrix update tests. We do not compare to CSR in the latter
case, since it is not possible to dynamically add entries without
rebuilding the matrix. This operation only loads the matrix and
does not perform any insertion checks. DCSR saw an average
speedup of 4.8× over HYB with streaming updates. In the
case of IND only DCSR was able to perform the operation
within memory capacity.

We also executed an iterative update test to compare the
ability of the formats to perform a combination of dynamic
updates and SpMV operations. This test is analogous to what
would be done in a graph application (such as CFA) where the
graph is updated at periodic intervals. In the iterative updates
test we perform a series of iterations consisting of a matrix
addition operation (A = A + B) followed by several SpMV
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Fig. 3: Top: Relative speedup of DCSR compared to HYB for iterative updates with SpMV operations. The speedup is compared
to a normalized CSR baseline. Bottom: Relative speedup of DCSR compared to HYB for matrix updates.

operations Ax = y. Part (a) of Figure 3 provides the results
for our iterative updates. Within each iteration, the matrix is
updated with an additional 0.2% random non-zeros followed
by 5 SpMV operations, which is repeated 50 times. This
process yields a total increase of 10% to the number of non-
zeros. We compare the DCSR and HYB results to a normalized
CSR baseline. In the CSR case a new matrix must be created to
update the original matrix, which causes a significant amount
of overhead (in terms of computation and memory). In the
cases of LJO and SOC, CSR was not able to complete within
memory capacity, so we normalized against HYB.

DCSR shows significant improvement over HYB on stream-
ing updates in all test cases (in some by as much as 8×).
DCSR also outperforms HYB in all test cases on iterative
updates, and in some cases by as much as 2.5×. The Amazon-
2008 matrix has a low standard deviation, and the majority
of its entries fit nicely into the ELL portion, which greatly
speeds up SpMV operations. However, even in this case DCSR
slightly outperforms HYB on iterative updates due to having
lower overhead for defragmentation. In all other cases DCSR
exhibits noticeable performance improvements over HYB and
CSR.

B. SpMV Results

In the SpMV tests we take the same set of matrices and
perform SpMV operations with randomly generated dense
vectors. We performed each SpMV operation 100× times
and averaged the results. Figure 4 provides the results for
these SpMV tests run using both single- and double-precision
floating-point arithmetic. We implemented the adaptive bin-
ning optimization (ACSR) outlined in [1], which we labeled

ADCSR. This optimization requires relatively little overhead
and provides noticeable speed improvements by using special-
ized kernels on bins of rows with similar row sizes. In these
tests we compare across several variants of our format, includ-
ing DCSR, defragmented DCSR, ADCSR, and defragmented
ADCSR, in addition to standard implementations of HYB and
CSR.

The fragmented DCSR times are 8% slower than the de-
fragmented DCSR times on average. When the DCSR format
is defragmented, it sees SpMV times competitive with those
of CSR (1% slower on average). With the adaptive binning
optimization applied, we see that ADCSR outperforms HYB
in many cases. ADCSR performs 9% better on average than
HYB across our benchmarks.

C. Post-Processing Overhead
Post-processing overhead is a concern when dealing with

dynamic matrix updates. Dynamic segmentation allows for
DCSR to be updated with new entries without requiring
the entries to be defragmented. SpMV operations can be
performed on the DCSR format regardless of the number and
order of segments, in contrast to HYB matrices where a sort
is required anytime an entry is added that overflows into the
COO portion. The SpMV operation for HYB matrices assumes
the COO entries are sorted by row (without this property the
COO SpMV would be dramatically slower). Table IV provides
post-processing times for HYB and DCSR formats relative
to a single SpMV operation. In the case of IND, HYB was
unable to sort and update due to insufficient memory (overhead
represented as ∞).

The defragmentation operation gives us an opportunity
to internally order rows by row-size at no additional cost.
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Fig. 4: FLOP ratings of SpMV operations for CSR, DCSR, and HYB.

Matrix DCSR HYB DCSR HYB
defrag sort update update

AMA 3.9 2.12 2.02 4.89
CNR 5.13 6.75 3.77 15.26
DBL 5.69 4.66 3.6 10.23
ENR 5.49 8.0 2.21 18.2
EU2 2.32 4.28 2.65 12.05
FLI 1.58 4.22 1.94 10.01

HOL 1.54 5.57 2.55 12.45
IN2 2.58 5.85 3.14 13.34
IND 2.15 ∞ 3.36 ∞
INT 6.74 6.19 1.76 8.78
KRO 1.02 3.43 1.82 11.3
LJO 1.45 3.02 1.34 6.1
RAL 0.72 2.04 1.82 13.61
SOC 1.05 3.74 1.02 5.74
WEB 2.65 1.93 2.54 7.39
WIK 1.39 2.54 1.32 5.49

TABLE IV: Overhead of DCSR defragmentation and HYB
sorting is measured as the ratio of one operation against a
single CSR SpMV. Update time is measured as the ratio of
1000 updates to a single CSR SpMV.

Our defragmentation algorithm is similar to the row sorting
technique illustrated in [21], although we use a global sorting
scope as opposed to a localized one. Because we explicitly
manage segments within the columns and values arrays by
both starting and ending index, the internal order of segments
may be changed arbitrarily, and this permutation remains
invisible from the outside. To accomplish this optimization
we permute row sizes according to the permuted row indices
(which have already been binned and sorted by row size). The

permuted row sizes can then be used to create new offsets for
the monolithic segments produced by defragmentation. The
column and value data can be internally reordered by row
size at no additional cost. We observed this internal reordering
to provides a noticeable SpMV performance improvement of
12%. This improvement is from an increased cache-hit rate via
better correlation between bin-specific kernels and the memory
they access.

The DCSR defragmentation incurs a lower overhead than
HYB sort because entries can be shuffled to their new index
without a sort operation. A DCSR defragmentation step is 2×
faster on average than the HYB sorting step. More importantly
this is required infrequently, while HYB sorting must be
performed at every insertion, which means that DCSR requires
significantly lower total post-processing overhead.

D. Multi-GPU Implementation

DCSR can be effectively mapped to multiple GPUs. The
matrix can be partitioned across n devices by dividing rows
between them (modulo n) after sorting by row size. This
provides a relatively even distribution of non-zeros between
the devices. Figure 5 provides scaling results for DCSR across
two Tesla K20c GPUs and up to eight Tesla M2090 GPUs. We
see an average speed up of 1.93× for the single precision and
1.97× across the set of test matrices. The RAL matrix sees
a smaller performance gain due to our distribution strategy
of dividing up the rows. The added parallelism is split across
rows but, in this case, the matrix has few rows and many
columns. We see nearly linear scaling for most test cases.

For the matrices INT and ENR we see reduced scaling
due to small matrix sizes. In these cases the kernel launch
times account for a significant portion of the total time due
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to a relatively small workload. The total compute time can
be approximately represented as c+ x

n , where c is the kernel
launch overhead and the workload x is divided amongst n
devices (assuming x can be fully parallelized). As the number
of devices increases, the work per device decreases while the
kernel launch time remains constant. In our tests we perform
100× iterations of each kernel, which leads to poor scaling
performance on small matrices. We performed additional tests
where we move the iterations into the kernel itself and call the
kernel once, eliminating the additional kernel launch times.
In this case we see scaling for the INT matrix of 1.94×,
3.55×, and 6.03× and for the ENR matrix we see scaling of
1.80×, 2.70×, and 3.76× for 2, 4, and 8 GPUs respectively.
This indicates that the poor performance of those cases was
primarily due to the low amount of work done relative to the
kernel launch overhead.

E. SpMM

We test the efficiency of our SpMM method through its
application to algebraic multigrid. We compare our method to
a similar version that computes SpMM using CSR and COO
matrices. AMG can be formulated in terms of SpMM, SpMV,
and primitive parallel operations. Algorithm 5 illustrates the
structure of the AMG preconditioner setup phase of AMG
given a sparse matrix A and a set of vectors B. In our tests
we used a constant vector, which is a common default. The
(RkAkPk) operation computes the Galerkin product of the
three matrices using SpMM by first computing A ∗ P = AP
followed by R ∗AP = RAP .

Algorithm 5: AMG Setup
Input: A, B
Output: A0,. . . ,AM , P0,. . . ,PM

1 A0 ← A, B0 ← B;
2 for k = 0, . . . ,M do
3 Ck ← strength(Ak);
4 Aggk ← aggregate(Ck);
5 Tk, Bk+1 ← tentative(Aggk, Bk);
6 Pk ← prolongator(Ak, Tk);
7 Rk ← PT

k ;
8 Ak+1 ← (RkAkPk);

We compare the results for AMG on 2D and 3D Poisson
problems with Dirichlet boundary conditions. It is known that
AMG performs well as a preconditioner on such problems,
which allows us to focus on the merits of the SpMM method
rather than on whether AMG is suited for the problem. Table V
lists the set of matrices used in our tests as well as the number
of unknowns and non-zeros. These tests were all computed
with double precision.

Figure 6 illustrates the results of our AMG tests with both
the individual SpMM times and the overall AMG precondi-
tioner times. Our method outperforms the baseline method by
upwards of 3× in some cases. The Galerkin product represents
30% – 50% of total time required by the setup phase of the
preconditioner. Results shown in [4] indicate that the Galerkin

Matrix Abbr. Unknowns Non-zeros
2D Poisson 5pt 2-5-a 262144 1310720
2D Poisson 9pt 2-9-a 262144 2359296
3D Poisson 7pt 3-7-a 262144 1810432
3D Poisson 27pt 3-27-a 262144 6859000
2D Poisson 5pt 2-5-b 1048576 5238784
2D Poisson 9pt 2-9-b 1048576 9424900
3D Poisson 7pt 3-7-b 2097152 14581760
3D Poisson 27pt 3-27-b 2097152 55742968

TABLE V: List of matrices used for AMG tests.

product occupies 50% – 60% of the run time on similar
matrices using a Nvidia Tesla C2050 GPU. This seems to
indicate that the underlying architecture plays a role in the
relative processing times across stages. In the case of matrix
3-7-a, the Galerkin product occupies roughly half of the setup
time, and our SpMM method is nearly 3× faster in that case,
resulting in a speedup of 40%. There is no guarantee what
the resulting fill will be in the C matrix, but in practice the
resulting fill is relatively sparse for multiplication with Poisson
matrices.

By taking advantage of asynchronous updates enabled by
DCSR, we are able to employ specialized kernels based on
row lengths. These row length optimized kernels perform the
sort and reduction operations within shared memory, which
is notably faster than performing these operations within
global memory. The efficient use of shared memory leads to
significant performance gains for the overall SpMM operation.
The Galerkin product is by far the largest single component
of the setup phase, so improvements in this area will lead to
the greatest gains.

V. CONCLUSION

We have described a fast, flexible, and memory-efficient
strategy for dynamic sparse-matrix allocation. The design of
current formats limits the extension of an existing matrix with
new entries. As many applications would benefit from efficient
dynamic updates, we have proposed a strategy of explicitly
managed dynamic segmentation that makes this operation
inexpensive. We demonstrate this approach with a new sparse
matrix format (DCSR), that provides a robust method for
allocating streaming updates while maintaining fast SpMV
times on par with CSR. The format gracefully degrades in
performance upon dynamic extension, but does not require a
sort to be performed after inserting new entries (as opposed
to COO-based formats such as HYB).

Without defragmentation, SpMV times are only marginally
slower than that of a fully constructed CSR matrix, and after
defragmentation they are roughly equal. With adaptive binning
applied, DCSR gives faster overall SpMV times compared to
the HYB format. DCSR is significantly more efficient in terms
of memory use as well. ELL must allocate enough room in
every row for the longest row in a matrix. The HYB format
improves in this area by allowing long rows to overflow into its
COO portion, but DCSR exhibited lower memory consumption
on every benchmark when set to allow two segments per row,
and still used 20% less memory on average when allowing
four segments per row.
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Fig. 5: Scaling results for SpMV with 1 and 2 K20 GPUs (upper) and 1, 2, 4, and 8 M2090 GPUs (lower).
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Fig. 6: Relative speedup for SpMM and AMG using DCSR and CSR.
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A key advantage of DCSR is compatibility with CSR-scalar,
CSR-vector, and other CSR algorithms. Only minor modifica-
tions are required to account for a difference in the format of
the row offsets array. We have demonstrated how CSR-specific
optimizations, such as adaptive binning, can be easily applied
to DCSR. Other optimizations such as tiling and blocking
could also be used. This compatibility also means that minimal
overhead is required to convert to and from CSR. Numerous
sparse-matrix formats have been developed that are specifically
tailored to GPU architectures. These formats offer improved
performance but require converting from whatever previous
format was being used. As CSR is the most commonly used
sparse-matrix format, and large amounts of software already
incorporate it into their code bases, it is often not worth the
conversion cost to introduce another format. DCSR reduces
this barrier with a low cost of conversion.

We demonstrated that DCSR significantly improves SpMM
for some matrices by as much as 2× – 3×, and applied the
format along with our SpMM algorithm to algebraic multigrid.
The ability to asynchronously update the C matrix allows for
the rows to be processed independently in any order. This
asynchronous property is key to enabling the row binning
technique which provides significant speedup to the sorting
and reduction operations.

To the best of our knowledge, no other work has created a
dynamic format like DCSR for iterative updates to sparse ma-
trices. Some dynamic graph algorithms, such as approximate
betweenness centrality [23], require dynamic updates but do
not specify how the graph should be represented and modified.
A matrix encoding would require a format such as DCSR
to be efficient. Dynamic insertion algorithms, such as those
described in [8], use a modified insertion sort that disperses
gaps throughout the data in order to reduce insertion time
from O(n) to O(log n) with high probability. This method
probabilistically reduces the overall cost of the insertion sort
from O(n2) to O(n log n). The defragmentation operation
we implement can be done in O(n), and insertions require
O(1), which is better than insertion sort. Also, leaving many
intermittent gaps between the data would slow SpMV times.
We mitigate this problem by grouping entries contiguously
within segments.

We believe our strategy fits certain operations and problems,
such as graph algorithms, that require periodically updating the
graph with new entries. These are applications that have not
previously been well addressed by sparse-matrix formats. Our
work also opens up a number of interesting research questions
as to whether existing algorithms that rebuild matrices between
iterations could be improved by a matrix format that permits
these dynamic updates directly.

REFERENCES

[1] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy,
and P. Sadayappan. Fast Sparse Matrix-vector Multiplication on GPUs
for Graph Applications. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
SC ’14, pages 781–792, Piscataway, NJ, USA, 2014. IEEE Press.

[2] Arash Ashari, Naser Sedaghati, John Eisenlohr, and P. Sadayappan. An
Efficient Two-dimensional Blocking Strategy for Sparse Matrix-vector
Multiplication on GPUs. In Proceedings of the 28th ACM International

Conference on Supercomputing, ICS ’14, pages 273–282, New York,
NY, USA, 2014. ACM.

[3] Haim Avron and Anshul Gupta. Managing Data-movement for Ef-
fective Shared-memory Parallelization of Out-of-core Sparse Solvers.
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12, pages 102:1–
102:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[4] Nathan Bell, Steven Dalton, and Luke N. Olson. Exposing Fine-Grained
Parallelism in Algebraic Multigrid Methods. SIAM Journal on Scientific
Computing, 2012.

[5] Nathan Bell and Michael Garland. Efficient Sparse Matrix-Vector
Multiplication on CUDA. NVIDIA Technical Report NVR-2008-004,
NVIDIA Corporation, December 2008.

[6] Nathan Bell and Michael Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC ’09: Proceed-
ings of the Conference on High Performance Computing Networking,
Storage and Analysis, pages 1–11, New York, NY, USA, 2009. ACM.

[7] Nathan Bell and Michael Garland. Cusp: Generic Parallel Algorithms
for Sparse Matrix and Graph Computations, 2012. Version 0.3.0.

[8] Michael A. Bender, Martin Farach-Colton, and Miguel A. Mosteiro.
Insertion Sort is O(n log n). Theory of Computing Systems, 39(3):391–
397, 2006.

[9] Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven
Autotuning of Sparse Matrix-vector Multiply on GPUs. SIGPLAN Not.,
45(5):115–126, January 2010.

[10] Timothy A. Davis and Yifan Hu. The University of Florida Sparse
Matrix Collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, December
2011.

[11] Michael Garland. Sparse Matrix Computations on Manycore GPU’s. In
Proceedings of the 45th Annual Design Automation Conference, DAC
’08, pages 2–6, New York, NY, USA, 2008. ACM.

[12] Michael Garland and David B. Kirk. Understanding Throughput-
oriented Architectures. Commun. ACM, 53(11):58–66, November 2010.

[13] JohnR. Gilbert, Steve Reinhardt, and ViralB. Shah. High-Performance
Graph Algorithms from Parallel Sparse Matrices. In Bo Kågström, Erik
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Computing. State of the Art in Scientific Computing, volume 4699 of
Lecture Notes in Computer Science, pages 260–269. Springer Berlin
Heidelberg, 2007.

[14] Thomas Gilray, Jim King, and Matthew Might. Partitioning 0-CFA for
the GPU. Workshop on Functional and Constraint Logic Programming,
September 2014.

[15] Joseph L. Greathouse and Mayank Daga. Efficient Sparse Matrix-
vector Multiplication on GPUs Using the CSR Storage Format. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14, pages 769–780,
Piscataway, NJ, USA, 2014. IEEE Press.

[16] Anshul Gupta, Seid Koric, and Thomas George. Sparse Matrix Fac-
torization on Massively Parallel Computers. In Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 1:1–1:12, New York, NY, USA, 2009. ACM.

[17] Eun-jin Im, Eun-jin Im, Katherine Yelick, and Katherine Yelick. Opti-
mization of Sparse Matrix Kernels for Data Mining. 2000.

[18] Jeremy Kepner and John Gilbert. Graph Algorithms in the Language
of Linear Algebra. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2011.

[19] Khronos Group. The OpenCL Specification, September 2011.
[20] James King, Thomas Gilray, Robert M. Kirby, and Matthew Might.

Dynamic Sparse-Matrix Allocation on GPUs. In To Appear at the
International SuperComputing Conference, ISC 2016, June 2016.

[21] Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and
Alan R. Bishop. A unified sparse matrix data format for modern
processors with wide SIMD units. CoRR, abs/1307.6209, 2013.

[22] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey.
Efficient Sparse Matrix-vector Multiplication on x86-based Many-core
Processors. In Proceedings of the 27th International ACM Conference
on International Conference on Supercomputing, ICS ’13, pages 273–
282, New York, NY, USA, 2013. ACM.

[23] A. McLaughlin and D.A. Bader. Revisiting Edge and Node Parallelism
for Dynamic GPU Graph Analytics. In Parallel Distributed Processing
Symposium Workshops (IPDPSW), 2014 IEEE International, pages
1396–1406, May 2014.

[24] Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU
implementation of inclusion-based points-to analysis. ACM SIGPLAN
Notices, 47(8):107–116, 2012.

[25] Jan Midtgaard. Control-flow analysis of functional programs. ACM
Computing Surveys, 44(3):10:1–10:33, June 2012.



14

[26] Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. Auto-
matically Tuning Sparse Matrix-Vector Multiplication for GPU Architec-
tures. In YaleN. Patt, Pierfrancesco Foglia, Evelyn Duesterwald, Paolo
Faraboschi, and Xavier Martorell, editors, High Performance Embedded
Architectures and Compilers, volume 5952 of Lecture Notes in Computer
Science, pages 111–125. Springer Berlin Heidelberg, 2010.

[27] NVIDIA. CUDA CUSPARSE Library, August 2010.
[28] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall.

EigenCFA: Accelerating flow analysis with GPUs. In Proceedings of
the Symposium on the Principals of Programming Languages, pages
511–522, January 2010.

[29] I. Reguly and M. Giles. Efficient sparse matrix-vector multiplication
on cache-based GPUs. In Innovative Parallel Computing (InPar), 2012,
pages 1–12, May 2012.

[30] Y. Saad. Iterative Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2nd
edition, 2003.

[31] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie-Mellon University, Pittsburgh, PA, May 1991.

[32] Bor-Yiing Su and Kurt Keutzer. clSpMV: A Cross-Platform OpenCL
SpMV Framework on GPUs. In Proceedings of the 26th ACM Inter-
national Conference on Supercomputing, ICS ’12, pages 353–364, New
York, NY, USA, 2012. ACM.

[33] Richard Wilson Vuduc. Automatic Performance Tuning of Sparse Matrix
Kernels. PhD thesis, 2003. AAI3121741.

[34] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine
Yelick, and James Demmel. Optimization of Sparse Matrix-vector
Multiplication on Emerging Multicore Platforms. In Proceedings of the
2007 ACM/IEEE Conference on Supercomputing, SC ’07, pages 38:1–
38:12, New York, NY, USA, 2007. ACM.

[35] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. yaSpMV:
Yet Another SpMV Framework on GPUs. In Proceedings of the 19th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’14, pages 107–118, New York, NY, USA, 2014.
ACM.

[36] Xintian Yang, Srinivasan Parthasarathy, and P. Sadayappan. Fast Sparse
Matrix-vector Multiplication on GPUs: Implications for Graph Mining.
Proc. VLDB Endow., 4(4):231–242, January 2011.


