
Dynamic Sparse-Matrix Allocation on GPUs

James King, Thomas Gilray, Robert M. Kirby, and Matthew Might

University of Utah
{jsking2,tgilray,kirby,might}@cs.utah.edu

Abstract. Sparse matrices are a core component in many numerical
simulations, and their efficiency is essential to achieving high perfor-
mance. Dynamic sparse-matrix allocation (insertion) can benefit a num-
ber of problems such as sparse-matrix factorization, sparse-matrix-matrix
addition, static analysis (e.g. points-to analysis), computing transitive
closure, and other graph algorithms. Existing sparse-matrix formats are
poorly designed to handle dynamic updates. The compressed sparse-row
(CSR) format is fully compact and must be rebuilt after each new entry.
Ellpack (ELL) stores a constant number of entries per row which allows
for efficient insertion and sparse matrix-vector multiplication (SpMV),
but is memory inefficient and strictly limits row size. The coordinate
(COO) format stores a list of entries and is efficient for both memory
use and insertion time; however, it is much less efficient at SpMV. Hybrid
ellpack (HYB) compromises by using a combination of ELL and COO,
but degrades in performance as the COO portion fills up. Rows which
may use the COO portion require it to be completely traversed during
every SpMV operation.
In this paper we take a new approach, introducing dynamic compressed
sparse row (DCSR) as a sparse-matrix format that permits efficient dy-
namic updates. These updates are significantly faster than those made
to a HYB matrix while maintaining SpMV times comparable to CSR.
We demonstrate the efficacy of our dynamic allocation scheme, evaluat-
ing updates and SpMV operations on adjacency matrices of sparse-graph
benchmarks on the GPU.

1 Introduction

Sparse matrix-vector multiply (SpMV) is the workhorse operation of many nu-
merical simulations, and has seen use in a wide variety of areas such as data
mining [1] and graph analytics [2]. Frequently in these algorithms, a majority of
the total processing is spent on SpMV operations. Iterative computations such
as the power method and conjugate gradient are commonly used in numerical
simulations, and require successive SpMV operations [3]. The use of GPUs has
become increasingly common in computing these operations as they are, in prin-
ciple, highly parallelizable. GPUs have both a high computational throughput
and a high memory bandwidth. Operations on sparse matrices are generally
memory bound; this makes the GPU a good target platform due to its higher
memory bandwidth compared to that of the CPU, however it is still difficult to



attain high performance with sparse matrices because of thread divergence and
non-coalesced memory accesses.

Some applications require dynamic updates to the matrix; generally con-
strued, updates may include inserting or deleting entries. Fully compressed for-
mats such as compressed sparse row (CSR) cannot handle these operations with-
out rebuilding the entire matrix. Rebuilding the matrix is orders of magnitude
more costly than performing an SpMV operation. The ellpack (ELL) format
allocates a fixed amount of space for each row, allowing fast insertion of new
entries and fast SpMV but limits each row to a predetermined number of entries
and can be highly memory inefficient. The coordinate (COO) format stores a list
of entries and permits both efficient memory use and fast dynamic updates but
is unordered and slow to perform SpMV operations. The hybrid-ellpack (HYB)
format attempts a compromise between these by combining an ELL matrix with
a COO matrix for overflow; where rows may require examination of this overflow
matrix however, SpMV efficiency suffers.

Matrix representations of sparse graphs sometimes exhibit a power-law dis-
tribution (when the number of nodes with a given number of edges scales as a
power of the number of edges). This results in a long tail distribution in which
a few rows have a relatively high number of entries while the rest have a rela-
tively low number. There are important real-world phenomena which exhibit the
power-law distribution. Their corresponding matrices can represent things such
as adjacency graphs, web communication, and finite-state simulations. Such a
matrix is also the pathological case for memory efficiency in the ELL format and
requires significant use of the COO portion of a HYB matrix making neither
particularly well suited for dynamic sparse-graph applications.

One motivating application for our work is control-flow analysis (CFA): a gen-
eral approach to static program analysis of higher-order languages [4, 5]. These
algorithms use an approximate interpretation of their target code to yield an
upper bound on the propagation of data and control through a program across
all possible actual executions. A CFA involves a series of increasing operations
on a graph (extending it with nodes and edges), terminating when a fixed point
is reached (a steady state where the analysis is self-consistent).

Recent work has shown how to implement this kind of static analysis as
linear-algebraic operations on the sparse-matrix representation of a function [6,
7]. Other recent work shows how to implement an inclusion-based points-to anal-
ysis of C on the GPU by applying a set of semantic rules to the adjacency matrix
of a sparse-graph [8]. These algorithms may be likened to finding the transitive
closure of a graph encoded as an adjacency matrix. The matrix is repeatedly
extended with new entries derived from SpMV until a fixed point is reached (no
more edges need to be accumulated). Each of these approaches to static analysis
on the GPU are very different; both however, require performant sparse-matrix
operations and dynamic insertion of new entries.

Sparse-matrix factorization is the essential step in direct methods for solving
linear systems. This is a highly time and memory consuming process which could
benefit from efficient dynamic updates to the factors being built or reduced.



Existing methods for LU -decomposition [9] and Cholesky decomposition [10]
make frequent use of sparse-matrix addition to union components of the overall
workload during a recursive merging step. This union of matrices is done by
allocating a fresh matrix all at once, or by proprietary ad-hoc methods which
have gone undiscussed in the literature. Our work provides a general matrix
format which allows such merging steps to incrementally extend an existing
matrix.

1.1 Contributions

Existing matrix formats are ill-suited for such dynamic allocation with many
being fully compressed or otherwise unable to be efficiently extended with new
entries. Our contribution in this paper is to present a fast, dynamic method for
sparse matrix allocation:

1. We review existing matrix formats and present an alternative ap-
proach to dynamic matrix allocation which allows an existing ma-
trix to be modified arbitrarily in-place.

2. We use this approach to design a specific matrix format dynamic
compressed sparse row (DCSR) which exhibits easy conversion
with standard CSR, fast dynamic updates, and fast SpMV.

3. We implement an open-source library for DCSR and demonstrate
its efficacy, benchmarking SpMV and insertions using the adja-
cency matrices for a suite of sparse-graph benchmarks.

2 Background

In this paper we are concerned with dynamic updates to sparse matrices. As
SpMV is arguably the most important sparse-matrix operation, we want to
maintain efficient times for the problem Ax = y. A major goal of sparse-matrix
formats is to reduce irregularity in the memory accesses. We provide a brief
overview of some of the most commonly used sparse-matrix formats.

The coordinate (COO) format is the simplest sparse-matrix format. It rep-
resents a matrix with three vectors holding the row indices, column indices, and
values for all non-zero entries in the matrix. The entries within a COO for-
mat must be sorted by row in order to efficiently perform an SpMV operation.
SpMV operations are conducted in parallel through segmented reductions over
the length of the arrays. Tracking which thread has processed the final entry in
a row requires explicit inter-thread communication.

The compressed sparse row/column (CSR/CSC) formats are similar to COO
in that they have arrays which fully store two of the three sets, either the column
indices or the row indices in addition to the values. Either the rows or columns
(in CSR or CSC respectively) are compressed to store only the offsets into the
other two arrays. For CSR, entry i and i + 1 in the row offsets array will store
the starting and ending offsets for row i. CSR has been shown to be one of the



best formats in terms of memory usage and SpMV efficiency due to its fully
compressed nature, and thus it has become widely used [11]. CSR has a greater
memory efficiency than COO which is a significant factor in speeding up SpMV
operations due to decreased memory bandwidth usage.

The ellpack (ELL) format uses two arrays, each of size m × k (where m is
the number of rows and k is a fixed width), to store the column indices and
the values of the matrix [12, 13]. These arrays are stored in column-major order
to allow for efficient parallel access across rows. This format is best suited for
matrices which have a fixed number of entries per row.

Allocating enough memory in each row to store the entire matrix is pro-
hibitively expensive for ELL when a matrix contains even one long row. The
hybrid-ellpack (HYB) format offers a compromise by using a combination of
ELL and COO. It stores as much as possible in an ELL portion, and the over-
flow from rows with a number of entries greater than the fixed ELL width is
stored in a COO portion. ELL and HYB have become popular on SIMD archi-
tectures due to the ability of thread warps to look through consecutive rows in
an efficient parallel manner [14].

The diagonal format (DIA) is best suited for banded matrices. It is formed
by two arrays which store the non-zero data and the offsets from the main
diagonal. The non-zero values are stored in an m × k array where m is the
number of rows in the matrix and k is the maximum number of non-zeros out of
any row in the matrix. The offsets are stored with respect to the main diagonal,
with positive offsets being to the right and negative offsets being to the left.
The SpMV parallelization of this format is similar to that of ELL with one
thread/vector being assigned to each row in the matrix. The values array is
statically sized, similar to ELL, which restricts its ability to handle insertions.

A number of other specialized sparse-matrix formats have been developed,
including jagged diagonal storage (JDS), block diagonal (BDIA), skyline stor-
age (SKS), tiled COO (TCOO), block ELL (BELL), and sliced-ELL (SELL)
[15], which offer improved performance for specific matrix types. Blocked vari-
ants of these and other formats work by storing localized entries in blocks for
better data locality and a reduction in index storage. “Cocktail” frameworks
which mix and match matrix formats to fit specific subsets of the matrix have
been developed, but they require significant preprocessing and are not easily
modified dynamically [16]. Garland et al. have provided detailed reviews of the
most common sparse matrix formats [12, 13, 17], as well as an analysis of their
performance on throughput oriented many-core processors [18].

Block formats such as BRC [19] and BCCOO [20] which use blocking, have
limited ability to add in additional entries. BRC can only add new entries if
those entries correspond to zeros within blocks that have been stored. BCCOO
can handle the addition of new entries, but it suffers from many of the same
problems as COO. Also, new insertions will not always follow a blocked structure,
so additional blocks may be sparse which lowers memory efficiency.

Many sparse matrix formats are fully compressed and do not allow additional
entries to be added to the matrix dynamically. Adding additional entries to a



CSR matrix requires rebuilding the entire matrix, since there is no free space
between entries. Of existing formats, COO is the most amenable to dynamic
updates because new entries can be placed at the end of the data structure.
However, updating a COO matrix in parallel requires atomic operations to keep
track of currently available memory locations. The ELL/HYB formats allow for
some additional entries to be added in a limited fashion. ELL cannot add in
more entries per row than the given width of the matrix, and while the HYB
format has a COO matrix to handle overflow from the ELL portion, it cannot
be efficiently updated in parallel since atomic operations are required and the
COO portion must maintain the sorted property.

A great deal of research has been devoted to improving the efficiency of
SpMV. This has been studied on both multi-core and many-core architectures.
Williams et al. demonstrated the efficacy of using architecture-specific data
structures to optimize performance [21, 22]. As SpMV is a bandwidth-limited
operation, research has also produced other methods such as automatic tuning,
blocking, and tiling, to increase cache hit rates and decrease bandwidth usage
[23–25].

Bandwidth limited sparse matrix-matrix operations such as sparse matrix-
matrix addition A + B = C and sparse matrix-matrix multiplication AB = C
remain difficult to compute efficiently. These operations require creating a new
sparse matrix C whose entries and sparsity will depend on the sparsity patterns
of A and B, and often will have a differing number of elements than either.
Current implementations generally look globally at both matrices and find the
intersection patterns using temporary workspace memory, after which the new
matrix C can be generated [26, 27]. This often involves format conversions which
are time consuming and less memory efficient than an in-place solution.

3 Dynamic Allocation

We present a dynamic sparse-matrix allocation method which allows for efficient
dynamic updates while still maintaining fast SpMV times. Our dynamic alloca-
tion uses a row offset array, representing a dense array of ordered rows, and for
each a fixed number of segment offsets. The column indices and values are stored
in arrays that are logically divided into these data segments in the same way that
CSR row offsets partition the column indices and values. Each such segment is
a contiguous portion of memory that stores entries within a row. Segments may
contain more space than entries to allow for future insertions. If entries within
the set of segments for a given row were laid out contiguously, this would be
equivalent to the corresponding row in CSR format. In the following subsection
we illustrate how dynamic allocation is performed after which we provide details
of how DCSR operations are implemented.

3.1 Dynamic CSR

Initializing the matrix can be done in one of two ways. Either a matrix can be
loaded from another format (e.g. COO or CSR), or the matrix can be initialized



1 3 4

Row Offsets

Column Indices

Values
59 7 8 7 682 12

0 2 3 21 3 4 0 431 20

DCSR
0 3 3 5 5 7 7 111113
-1Segments

0 3 5 7 11

1 3 4

Row Offsets

Column Indices

Values

13

59 7 8 7 682 12

0 2 3 21 3 4 0 431 20

CSR

0
2

1
2

3
4

0
1

0
2

HYB

4

Column Indices

Values
68

3 43

Row Indices
0 33

Column Indices Values
1
3

9
5

7
8

7
2

2
1

ELL COO

1

7

0 3 4 0
00590

0 0 0 7 8
68

1
2 0

0002

Sparse Matrix

-1 -1 -1 -1 -1 -1 -1 -1 -1

Row Sizes
3 2 2 4 2

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

(a) Format Comparison

1 3 4

Row Offsets

Column Indices

Values
59 7 8 7 682

0 2 3 21 3 4 0 431

0 4 4 8
-1 -1

8 12
-1 -1

1216
-1 -1-1 -1

Segs.

-

- - - - -

- -- - ...

...

1 3 4

Column Indices

Values
59 7 8 7 682

0 2 3 21 3 4 0 4311

1 - - 3 -

2 -- -

...

...

0 0 2 3

1 4 2 2

1 2 3 1

Row Indices

Column Indices

Values

3 3

4 - - - 2 -79

9 7

8 4

2 - - - 1 -48

Row Offsets
0 4 4 8

-1 -1
8 12
-1 -1

1216
20241620

Segs.

Inserting Entries:

1 3 4

Column Indices

Values
59 7 8 7 682

0 2 3 21 3 4 0 4311

1 3

2

...

...4 2 79

2 1 48

Row Offsets
0 5 5 7

-1 -1
7 10
-1 -1

1017
-1 -1-1 -1

Segs.

Defragmentation:

Row Sizes
5 2 3 7

New offsets0 5 5 7 7 10 1017

(b) DCSR Insertion

Fig. 1: (a): Comparison of CSR, DCSR and HYB formats.
(b): Illustration of insertion and defragmentation operations with DCSR.

as blank. In the latter case, each row is assigned an initial number of entries
(an initial segment size) in the column indices and values arrays. The row offset
array is initialized with space for k segment offset pairs, with either no allocated
segments or a single allocated segment of size µ per row. In the latter case this
consumes the same amount of memory as an ELL matrix with a row width
of µ, except in row-major order instead of column-major order. To allow for
dynamic allocation we maintain a larger memory buffer than needed and use
simple bump-pointer allocation to add new segments. This allocation pointer is
set to the end of the currently used space (rows×µ in the case of a new matrix).
A maximum size of memory buffer for the columns and values arrays is specified
by the user. Figure 1(a) provides an illustrative comparison of CSR, HYB, and
DCSR formats.

In total, the format consists of four arrays for column indices, values, row
offsets, and row sizes, in addition to a memory allocation pointer. The row offsets
array functions in a similar manner to that of its CSR counterpart, except that
both a beginning and ending offset are stored and space exists for up to k such



pairs per row. This table is encoded as a strided array where the starting and
ending offsets of segment k in row i are indexed by (i ∗ 2 + k ∗ pitch) and
(i∗2+k ∗pitch+1) respectively. The pitch may be defined as a value convenient
for cache performance such that pitch ≥ 2 ∗ rows. Each set of offsets for a
given segment lies within a different cache line, this serves to increase memory
aligned accesses. The number of memory segment offset pairs (the max k) is
an adjustable parameter specified at matrix construction. The column indices
and values correspond 1:1, just as in CSR. Unlike CSR however, there may be
more than one memory segment assigned to a given row and they need not be
contiguous. As the last segment for a row may not be full, the actual row sizes
are maintained so the used portion of each segment is known.

Explicitly storing row sizes allows for optimization techniques such as adap-
tive CSR (ACSR) [28] (of which we take advantage). This optimization imple-
ments customized kernels to process bins of specified row-lengths. During this
binning process, we create a permuted set of row indices that are sorted ac-
cording to these bin groupings. We launch each bin-specific kernel with these
permuted indices on its own stream. This allows each kernel to easily access the
rows that it needs to process without scanning over the matrix.

When inserting new elements within a row, the last allocated segment for
that row is located and if space is available, the new elements are inserted in
a contiguous fashion just after current entries. If that segment does not have
enough room, a new segment will be allocated with the appropriate size plus
an additional amount α. The α value represents additional “slack space”, and
allows for a greater number of entries to be inserted without the creation of
a new segment. If dynamic updates follow a power-law distribution, it will be
more likely to have additional entries inserted into longer rows. Although we
experimented with setting α to be a factor of the previous segment size, for our
tests we settled on a value of µ (average row size of matrix). When a new segment
is allocated, the memory allocation pointer is atomically increased by the size
of the new segment. A hard limit on these additions, before defragmentation is
required, is fixed by the number of segments k. The defragmentation operation
always reduces the number of segments in each row to one. This allows the
format to scale to an arbitrary number of allocations.

When inserting new elements into the matrix it is possible that duplicate
non-zero entries (i.e. two or more entries with the same row and column index)
will be added. Duplicate entries are handled in one of two ways. The first method
is to simply let them accumulate as it does not pose a problem for many opera-
tions. SpMV operations are tolerant of duplicate entries due to the distributive
property of the inner product and will yield the same result to within floating
point tolerance. For binary matrices, the row-vector inner products will produce
the same result irrespective of duplicate non-zeros. A second solution is to per-
form a segmented reduction on the entries after sorting by row and column. This
combines all duplicate entries into a single entry but is generally not needed when
only performing SpMV and addition operations. Sparse matrix-matrix multipli-
cation (SpMM) operations may cause significant fill in which would require such



a reduction to be performed. In our tests, we let the values accumulate for all
formats as they do not hinder the SpMV operations that are performed.

An SpMV operation works as follows. Initially the first pair of segment offsets
is fetched. The entries within the corresponding segment are multiplied by the
appropriate values in x according to the algorithm being used (CSR-scalar, CSR-
vector, etc.). If the row size is greater than the capacity of the current memory
segment, the next pair of offsets is fetched. If the size of the current segment
plus the running sum of the previous segment sizes is greater-or-equal to the row
size, this indicates that this is the final segment of the row. In the case that the
final segment is not full, the location of the last entry can be determined by the
difference of the row size and the running sum. This process continues until the
entire row has been read.

As the matrix accumulates more segments, SpMV performance decreases
slightly. A fixed number of segments also means this process cannot continue
forever. Our solution to both problems is to implement a defragmentation op-
eration which compacts all of the entries within the column indices and values
arrays, eliminating empty space. This exchanges multiple segments in each row
for a single segment that compactly stores the entire row. This operation may
be invoked periodically, or more conservatively when a row has reached its max-
imum capacity of segments. In practice we do the latter and set a flag when any
row reaches its max segment count. At this point we consider defragmentation
to be required.

Defragmentation performs the equivalent to a sort by row operation on the
entries of the matrix, however we formulated a method which does not require an
actual sort and is significantly faster than doing so. Since we explicitly store row
sizes, we perform a prefix-sum operation on them to calculate the new row offsets
in a compacted CSR form. After this, the entries are shuffled from their current
indices to their new indices in newly allocated column indices and values buffers,
after which we set a pointer in our data structure to these new arrays and free the
old buffers (shallow copy). By using the knowledge of the row sizes to compute
resulting offsets and indices, we eliminate the need to do any comparisons in this
operation which greatly improves performance.

Figure 1(b) illustrates an example of inserting new elements into a DCSR
matrix. Initially the matrix has four populated rows with the memory allocation
pointer being 16. Row 0 can insert 1 additional entry in its current segment
before a new segment would need to be allocated. Rows 1 and 2 have enough
room for two additional entries, while row 3 is full. The diagram below shows a
set of new entries which are inserted into rows 0, 2, and 3. In this case a new
segment of size 4 is allocated for row 0 and row 3. The additional segments need
not be consecutive nor in order of row since the exact offsets are stored for each
segment. Finally the defragmentation operation computes new segment offsets
from the row sizes. The entries are shuffled to their new indices, which results
in a single compacted segment for each row.

As CSR is the most commonly used sparse matrix format, we designed DCSR
to be compatible with CSR algorithms and to allow for easy conversion between



the formats. It requires minimal overhead to convert from CSR to DCSR and
vice-versa. When converting from CSR to DCSR, the column indices and values
arrays are copied directly. For the row offsets array, the ith element is copied to
indices i ∗ 2− 1 and i ∗ 2 for all elements except the first and last one. A simple
subtraction must be performed to calculate the row sizes from the row offsets.
Converting back is equally simple, assuming the matrix is first defragmented;
the column indices and values arrays are copied back and the starting segment
offset from each row is copied into the row offsets array.

4 Experimental Results

To benchmark SpMV, update, and conversion performance, we used an Intel
Xeon E5-2640 processor running at 2.50GHz, 128GB of memory, and 3 NVIDIA
Tesla K20c GPUs. For additional scaling tests, we used an Intel Xeon E5630
processor running at 2.53GHz, 128GB of memory, and 8 NVIDIA Tesla M2090
GPUs. We compiled using g++ 4.7.2, CUDA 5.5, and Thrust 1.8, comparing
our method against modern implementations in CUSP [26] and cuSPARSE [29].
Table 1(a) provides a list of the matrices that we used in our tests as well as
their sizes, number of nonzeros, and row entry distributions. All the matrices
can be found in the University of Florida sparse-matrix database [30].

Memory consumption is a major concern for sparse matrix formats, as one of
the primary reasons for eliminating the storage of zeros is to reduce the memory
footprint. The ELL component of HYB is best suited to store rows with an equal
number of entries. If there is a large variance in row size, much of the ELL portion
may end up storing many zeros which is inefficient. We provide a comparison of
memory consumption for HYB, DCSR (using 2, 3, and 4 segments), and CSR
formats in Table 1(b). We compute the storage size of the HYB format using
an ELL width equal to the average number of non-zeros per row (µ) for the
given matrix. CSR has the smallest memory footprint since its row indices have
been compressed to the number of rows in the matrix. We see that DCSR has a
significantly smaller memory footprint in almost all of the test cases. Test cases
like AMA and DBL have lower memory consumption for HYB than for DCSR
(with 3 and 4 segments), due to the fact that these matrices have a low row size
variance. DCSR with 4 segments uses 20% less memory on average than HYB.

Conversion times between formats are often a key factor when determining
the efficacy of a particular format. High conversion times can be a significant
hindrance to efficient performance. Architecture-specific formats may provide
better performance, but unless the rest of the code base uses that format the
conversion time must be accounted for. We provide the overhead required to
convert to and from CSR and COO matrices in Table 2(a). The conversion
times have been normalized against the time required to copy CSR → CSR.
The conversion times to DCSR are only slightly higher compared to that of
CSR. HYB requires significant overhead as the entries must first be distributed
throughout the ELL portion and the remaining overflow entries distributed into
the COO portion.



Matrix Abbr. NNZ Rows \Cols µ \σ \Max

amazon-2008 AMA 5M 735K 7 \ 4 \ 10
cnr-2000 CNR 3M 325K 9 \ 21 \ 2716
dblp-2010 DBL 807K 326K 2 \ 4 \ 154

enron ENR 276K 69K 3 \ 28 \ 1392
eu-2005 EU2 19M 862K 22 \ 29 \ 6985

flickr FLI 9M 820K 11 \ 87 \ 10K
hollywood-2009 HOL 57M 1139K 50 \ 160 \ 6689

in-2004 IN2 16M 1382K 12 \ 37 \ 7753
indochina-2004 IND 194M 7414K 26 \ 216 \ 6985

internet INT 207K 124K 1 \ 4 \ 138
kron-18 KRO 10M 262K 40 \ 261 \ 29K

ljournal-2008 LJO 79M 5363K 14 \ 37 \ 2469
rail4284 RAL 11M 4K \ 1M 2633 \ 4K \ 56K

soc-LiveJournal1 SOC 68M 4847K 14 \ 35 \ 20K
webbase-1M WEB 3M 1000K 3 \ 25 \ 4700

wikipedia-2005 WIK 19M 1634K 12 \ 31 \ 4970

(a) Matrices

Matrix HYB size DCSR DCSR DCSR CSR
2 segs. 3 segs. 4 segs.

AMA 54M 0.924 1.026 1.128 0.77
CNR 47M 0.626 0.679 0.732 0.547
DBL 12M 0.86 1.052 1.245 0.572
ENR 4M 0.653 0.762 0.871 0.489
EU2 236M 0.675 0.703 0.731 0.633
FLI 160M 0.546 0.585 0.624 0.487
HOL 859M 0.531 0.541 0.551 0.516
IN2 229M 0.654 0.7 0.746 0.585
IND 2791M 0.571 0.591 0.612 0.541
INT 4M 0.761 0.969 1.177 0.449
KRO 171M 0.493 0.505 0.516 0.475
LJO 1152M 0.594 0.63 0.665 0.541
RAL 149M 0.577 0.577 0.577 0.576
SOC 1009M 0.595 0.631 0.668 0.54
WEB 40M 0.966 1.155 1.344 0.682
WIK 276M 0.635 0.68 0.725 0.567

(b) Memory Occupancy

Table 1: (a): Matrices used in tests. NNZ: total number of non-zeros, µ: average
row size, σ: standard deviation of row sizes, Max: maximum row size.
(b): Comparison of memory consumption between HYB, CSR, and DCSR for-
mats. Size of HYB is listed in bytes (using ELL width of µ), while sizes for DCSR
and CSR are listed as a percent of the HYB size.

4.1 Matrix updates

To measure the speed of dynamic updates, we ran two series of tests which
involved streaming updates and iterative updates. In the streaming updates
test, we incrementally build up the matrix by continuously inserting new entries.
The elements are first buffered into three arrays, representing the rows indices,
column indices, and values. We initialize the matrix sizes according to the average
number of non-zeros for the given input, afterward the entries are added in a
streaming parallel fashion to the matrices.

Updating a HYB matrix first requires checking the ELL portion, and if the
row in question is full, inserting the new entry into the COO portion. Any
updates to the COO portion require atomic operations to ensure synchronous
writes between multiple threads. These atomic updates are prohibitive to fast
parallel updates as all threads are contending to insert entries onto the end of
the COO matrix.

Updating a DCSR matrix requires finding the last occupied (current) seg-
ment within in a row. If that segment is not full, the new entry is added into
it and the row size is increased. When the current segment for a row fills up, a
new segment is allocated dynamically. Since atomic operations are only required
for the allocation of new segments, and not for each individual element, syn-
chronization overhead is kept low. By allowing for dynamically sized slack space



From COO COO COO CSR CSR DCSR
To CSR DCSR HYB DCSR HYB CSR

AMA 2.93 3.03 9.22 1.06 9.25 0.9
CNR 2.24 2.62 14.84 1.04 13.62 0.87
DBL 4.34 5.74 18.07 1.17 16.83 1.1
ENR 5.56 5.95 27.15 1.29 26.95 1.14
EU2 2.1 2.29 16.08 1.06 15.67 0.99
FLI 2.13 2.5 23.29 1.06 19.74 0.96
HOL 1.82 1.9 20.37 1.01 20.3 0.99
IN2 2.15 2.42 18.12 1.06 18.15 0.98
IND 1.93 1.98 ∞ 1.03 ∞ 1.01
INT 12.07 13.74 21.38 1.3 15.12 1.0
KRO 1.78 2.09 24.01 1.0 20.14 0.91
LJO 2.09 2.19 19.96 1.02 19.97 0.98
RAL 1.73 2.03 20.67 1.0 17.97 0.91
SOC 2.22 2.35 20.47 1.06 20.41 1.01
WEB 2.89 3.19 11.45 1.16 11.56 0.86
WIK 2.18 2.42 20.13 1.07 20.11 0.98

(a) Conversion Times

Matrix DCSR HYB DCSR HYB
defrag sort update update

AMA 3.9 2.12 2.02 4.89
CNR 5.13 6.75 3.77 15.26
DBL 5.69 4.66 3.6 10.23
ENR 5.49 8.0 2.21 18.2
EU2 2.32 4.28 2.65 12.05
FLI 1.58 4.22 1.94 10.01
HOL 1.54 5.57 2.55 12.45
IN2 2.58 5.85 3.14 13.34
IND 2.15 ∞ 3.36 ∞
INT 6.74 6.19 1.76 8.78
KRO 1.02 3.43 1.82 11.3
LJO 1.45 3.02 1.34 6.1
RAL 0.72 2.04 1.82 13.61
SOC 1.05 3.74 1.02 5.74
WEB 2.65 1.93 2.54 7.39
WIK 1.39 2.54 1.32 5.49

(b) Sorting Overhead

Table 2: (a): Comparison of relative conversion times. Conversions are normalized
against time to copy CSR→CSR.
(b): Overhead of DCSR defragmentation and HYB sorting is measured as the
ratio of one operation against a single CSR SpMV. Update time is measured as
the ratio of 1000 updates to a single CSR SpMV.

within a row, we dramatically reduce the number of atomic operations that are
required to allocate new entries. In this way, DCSR was designed to be updated
in an efficient parallel manner.

The number of segments, initial row width, and α value can be tuned for
the problem to give a reasonable limit on updates. In our tests we used four
segments and α value of µ (average row size of the matrix). When a row nears
its limit a defragmentation is required in order to reduce that row to a single
segment.

Figure 2 provides the results of our iterative and streaming matrix update
tests. We do not compare to CSR in the latter case, since it is not truly possible
to dynamically add entries without rebuilding the matrix. This operation is
strictly loading the matrix and does not perform any insertion checks. DCSR
saw an average speedup of 4.8× over HYB with streaming updates. In the case
of IND, only DCSR was able to perform the operation within memory capacity.

We also executed an iterative update test to compare the formats abilities
at performing a combination of dynamic updates and SpMV operations. This is
analogous to what would be done in a graph application (such as CFA) where the
graph is updated at periodic intervals. In the iterative updates test we perform
a series of iterations consisting of a matrix addition operation (A = A + B)
followed by several SpMV operations Ax = y. Part (a) of Figure 2 provides the
results for our iterative updates. Within each iteration, the matrix is updated



(a) Iterative Updates

AMA CNR DBL ENR EU2 FLI HOL IN2 IND INT KRO LJO RAL SOC WEB WIK
0

2

4

6

8

R
el

at
iv

e 
S

p
ee

d
u

p

(b) Streaming Updates

Fig. 2: Top: Relative speedup of DCSR compared to HYB for iterative updates
with SpMV operations. The speedup is compared to a normalized CSR baseline.
Bottom: Relative speedup of DCSR compared to HYB for matrix updates.

with an additional 0.2% random non-zeros followed by 5 SpMV operations, which
is repeated 50 times. This yields a total increase of 10% to the number of non-
zeros. We compare the DCSR and HYB results to a normalized CSR baseline. In
the CSR case a new matrix must be created to update the original matrix which
causes a significant amount of overhead (in terms of computation and memory).
In the cases of LJO and SOC, CSR was not able to complete within memory
capacity, so we normalized against HYB.

DCSR shows significant improvement over HYB on streaming updates in all
test cases (in some by as much as 8×). DCSR also outperforms HYB in all test
cases on iterative updates, and in some cases by as much as 2.5×. The Amazon-
2008 matrix has a low standard deviation and the majority of its entries fit nicely
into the ELL portion, which greatly speeds up SpMV operations. However, even
in this case DCSR slightly outperforms HYB on iterative updates due to having
lower overhead for defragmentation. In all other cases DCSR exhibits noticeable
performance improvements over HYB and CSR.

4.2 SpMV results

In the SpMV tests we take the same set of matrices and perform SpMV oper-
ations with randomly generated dense vectors. We performed each SpMV op-
eration 100× times and averaged the results. Figure 3 provides the results for
these SpMV tests run using both single and double-precision floating-point arith-
metic. We implemented the adaptive binning optimization (ACSR) outlined in
[28] which we labeled ADCSR. This optimization requires relatively little over-
head and provides noticeable speed improvements by using specialized kernels



(a) Single Precision

AMA CNR DBL ENR EU2 FLI HOL IN2 IND INT KRO LJO RAL SOC WEB WIK
0

5

10

G
F

L
O

P
S

(b) Double Precision

Fig. 3: FLOP ratings of SpMV operations for CSR, DCSR, and HYB.

on bins of rows with similar row sizes. In these tests we compare across sev-
eral variants of our format including DCSR, defragmented DCSR, ADCSR, and
defragmented ADCSR, in addition to standard implementations of HYB and
CSR.

The fragmented DCSR times are 8% slower than the defragmented DCSR
times on average. When the DCSR format is defragmented it sees SpMV times
competitive with those of CSR (1% slower on average). With the adaptive bin-
ning optimization applied, we see that ADCSR outperforms HYB in many cases.
On average ADCSR performed 9% better than HYB across our benchmarks.

4.3 Post-processing overhead

Post-processing overhead is a concern when dealing with dynamic matrix up-
dates. Dynamic segmentation allows for DCSR to be updated with new entries
without requiring the entries to be defragmented. SpMV operations can be per-
formed on the DCSR format regardless of the order of the segments. This is
unlike HYB matrices, where a sort is required anytime an entry is added that
overflows into the COO portion. The SpMV operation for HYB matrices assumes
the COO entries are sorted by row (without this property the COO SpMV would
be dramatically slower). Table 2 provides post-processing times for HYB and
DCSR formats relative to a single SpMV operation. In the case of IND, HYB
was unable to sort and update due to insufficient memory (overhead represented
as ∞).

By its nature, the defragmentation operation gives us an opportunity to
internally order rows by row-size at no additional cost. This is similar to the
row sorting technique illustrated in [31], although we use a global sorting scope



(a) Tesla K20c

(b) Tesla M2090

Fig. 4: Scaling results for SpMV with 1 and 2 K20 GPUs (upper) and 1, 2, 4,
and 8 M2090 GPUs (lower).

as opposed to a localized one. In addition, that we explicitly manage segments
within the columns and values arrays by both starting and ending index means
the internal order of segments may be changed arbitrarily and this permutation
remains invisible from the outside. To accomplish this optimization we permute
row sizes according to the permuted row indices (which have already been binned
and sorted by row size). The permuted row sizes can then be used to create
new offsets for the monolithic segments produced by defragmentation. This has
the effect of internally reordering column and value data by row size at no
additional cost. We observed this internal reordering to provide a noticeable
SpMV performance improvement of 12%. This improvement is from an increased
cache-hit rate via better correlation between bin-specific kernels and the memory
they access.

The DCSR defragmentation incurs a lower overhead than for HYB sort due
to the fact that entries can be shuffled to their new index without a sort op-
eration. That a DCSR defragmentation step is 2× faster on average than the
HYB sorting step, and more importantly that this is only required infrequently
(while HYB sorting must be performed at every insertion) means that DCSR re-
quires significantly lower total post-processing overhead. This in-turn represents
a major advantage in the format’s overall performance.

4.4 Multi-GPU Implementation

DCSR can be effectively mapped to multiple GPUs. The matrix can be parti-
tioned across n devices by dividing rows between them (modulo n) after sorting
by row size. This provides a roughly even distribution of non-zeros between the



devices. Figure 4 provides scaling results for DCSR across two Tesla K20c GPUs
and up to eight Tesla M2090 GPUs. We see an average speed up of 1.93× for the
single precision and 1.97× for across the set of test matrices. The RAL matrix
sees a smaller performance gain due to our distribution strategy of dividing up
the rows. The added parallelism is split across rows but, in this case, the matrix
has few rows and many columns. We see nearly linear scaling for most test cases.

For the matrices INT and ENR we see reduced scaling due to small matrix
sizes. In these cases the kernel launch times account for a significant portion of
the total time due to a relatively small workload. The total compute time can
be roughly represented as c+ x

n , where c is the kernel launch overhead and the
workload x is divided amongst n devices (assuming x can be fully parallelized).
As the number of devices increases, the work per device decreases while the kernel
launch time remains constant. In our tests we perform 100× iterations of each
kernel, which leads to poor scaling performance on small matrices. We performed
additional tests where we move the iterations into the kernel itself and call the
kernel once, eliminating the additional kernel launch times. In this case we see
scaling for the INT matrix of 1.94×, 3.55×, and 6.03× and for the ENR matrix
we see scaling of 1.80×, 2.70×, and 3.76× for 2, 4, and 8 GPUs respectively.
This indicates that the poor performance of those cases was primarily due to
the low amount of work done relative to the kernel launch overhead.

5 Conclusion

We have described a fast, flexible, and memory-efficient strategy for dynamic
sparse-matrix allocation. The design of current formats limits the extension of
an existing matrix with new entries. As many applications require or would
benefit from efficient dynamic updates, we have proposed a strategy of explicitly
managed dynamic segmentation which makes this operation inexpensive. Our
approach is presented and evaluated using a new format (DCSR) which provides
a robust method for allocating streaming updates while maintaining fast SpMV
times on a par with that of CSR. The format gracefully degrades in performance
upon dynamic extension, but does not require a sort to be performed after
inserting new entries (as opposed to COO based formats like HYB).

Without defragmentation, SpMV times are only marginally slower than that
of a fully constructed CSR matrix, and after defragmentation they are roughly
equal. With adaptive binning applied, DCSR gives faster overall SpMV times as
compared to the HYB format. DCSR is significantly more efficient in terms of
memory use as well. ELL must allocate enough room in every row for the longest
row in a matrix. HYB is a vast improvement, allowing long rows to overflow into
its COO portion, however DCSR exhibited lower memory consumption on every
benchmark when set to allow 2 segments per row, and still used 20% less memory
on average when allowing 4 segments per row.

A key advantage of DCSR in its design is compatibility with CSR-scalar,
CSR-vector, and other CSR algorithms. Only minor modifications are required
to account for a difference in the format of the row offsets array. We have demon-



strated how CSR specific optimizations, such as adaptive binning, can be easily
applied to DCSR. Other optimizations such as tiling and blocking could also be
used. This compatibility also means that minimal overhead is required to convert
to and from CSR. Numerous sparse-matrix formats have been developed which
are specifically tailored to GPU architectures. These formats offer improved per-
formance, but require converting from whatever previous format was being used.
As CSR is the most commonly used sparse-matrix format, and large amounts of
software already incorporate it into their code bases, it is often not worth the
conversion cost to introduce another format. DCSR reduces this barrier to use
with a low cost of conversion.

To the best of our knowledge, no other work has created a dynamic for-
mat like DCSR for iterative updates to sparse matrices. Some dynamic graph
algorithms, such as approximate betweenness centrality [32], require dynamic
updates but do not specify how the graph should be represented and modified—
a matrix encoding would require a format like DCSR to be efficient. Dynamic
insertion algorithms, like that described in [33], use a modified insertion sort
that disperses gaps throughout the data in order to reduce insertion time from
O(n) to O(log n) with high probability. This probabilistically reduces the over-
all cost of the insertion sort from O(n2) to O(n log n). The defragmentation
operation we implement can be done in O(n) and insertions require O(1), which
is better than insertion sort. Also, leaving many intermittent gaps between the
data would slow SpMV times. We mitigate this problem by grouping entries
contiguously within segments.

We believe our strategy lends itself well to certain operations and problems,
such as graph algorithms that require periodically updating the graph with new
entries. These are applications that have not previously been well addressed by
sparse-matrix formats. Our work also opens up a number of interesting research
questions as to whether existing algorithms which rebuild matrices between it-
erations could be improved by a matrix format which permits these dynamic
updates directly.

We pursue this hypothesis in continuing work which applies DCSR to GPU-
based CFA (static analysis of functional programs). CFA was a primary moti-
vation behind this work and, much like the transitive-closure problem, progress
is made through a series of small updates to a graph. Recent work has shown
how these kind of program analyses may be more efficiently implemented via an
encoding to linear algebra; however, existing implementations compromise run
time by using a CSR format which must be constantly rebuilt, or memory effi-
ciency by using an ELL format that must be statically allocated with sufficient
space. In the latter case, this is impossible for all but the most trivial inputs.

References

1. Im Ej, Im Ej, Yelick K, Yelick K. Optimization of Sparse Matrix Kernels for Data
Mining. In: First SIAM Conf. on Data Mining; 2000. .

2. Gilbert J, Reinhardt S, Shah V. High-Performance Graph Algorithms from Parallel
Sparse Matrices. In: K̊agström B, Elmroth E, Dongarra J, Waśniewski J, editors.



Applied Parallel Computing. State of the Art in Scientific Computing. vol. 4699 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg; 2007. p. 260–269.

3. Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics; 2003. Available from:
Saad:2003:IMS.

4. Shivers O. Control-Flow Analysis of Higher-Order Languages. Carnegie-Mellon
University. Pittsburgh, PA; 1991.

5. Midtgaard J. Control-flow analysis of functional programs. ACM Computing
Surveys. 2012 Jun;44(3):10:1–10:33.

6. Gilray T, King J, Might M. Partitioning 0-CFA for the GPU. Workshop on
Functional and Constraint Logic Programming. 2014 September;.

7. Prabhu T, Ramalingam S, Might M, Hall M. EigenCFA: Accelerating flow analysis
with GPUs. In: Proceedings of the Symposium on the Principals of Programming
Languages; 2010. p. 511–522.

8. Mendez-Lojo M, Burtscher M, Pingali K. A GPU implementation of inclusion-
based points-to analysis. ACM SIGPLAN Notices. 2012;47(8):107–116.

9. Gupta A, Koric S, George T. Sparse Matrix Factorization on Massively Parallel
Computers. In: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis. SC ’09. New York, NY, USA: ACM; 2009. p.
1:1–1:12.

10. Avron H, Gupta A. Managing Data-movement for Effective Shared-memory Par-
allelization of Out-of-core Sparse Solvers. In: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
SC ’12. Los Alamitos, CA, USA: IEEE Computer Society Press; 2012. p. 102:1–
102:11.

11. Greathouse JL, Daga M. Efficient Sparse Matrix-vector Multiplication on GPUs
Using the CSR Storage Format. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. SC ’14. Pis-
cataway, NJ, USA: IEEE Press; 2014. p. 769–780.

12. Garland M. Sparse Matrix Computations on Manycore GPU’s. In: Proceedings of
the 45th Annual Design Automation Conference. DAC ’08. New York, NY, USA:
ACM; 2008. p. 2–6.

13. Garland M, Kirk DB. Understanding Throughput-oriented Architectures. Com-
mun ACM. 2010 Nov;53(11):58–66.

14. Bell N, Garland M. Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Corporation; 2008. NVR-2008-004.

15. Monakov A, Lokhmotov A, Avetisyan A. Automatically Tuning Sparse Matrix-
Vector Multiplication for GPU Architectures. In: Patt Y, Foglia P, Duesterwald
E, Faraboschi P, Martorell X, editors. High Performance Embedded Architectures
and Compilers. vol. 5952 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg; 2010. p. 111–125.

16. Su BY, Keutzer K. clSpMV: A Cross-Platform OpenCL SpMV Framework on
GPUs. In: Proceedings of the 26th ACM International Conference on Supercom-
puting. ICS ’12. New York, NY, USA: ACM; 2012. p. 353–364.

17. Vuduc RW. Automatic Performance Tuning of Sparse Matrix Kernels; 2003.
AAI3121741.

18. Bell N, Garland M. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: SC ’09: Proceedings of the Conference on
High Performance Computing Networking, Storage and Analysis. New York, NY,
USA: ACM; 2009. p. 1–11.



19. Ashari A, Sedaghati N, Eisenlohr J, Sadayappan P. An Efficient Two-dimensional
Blocking Strategy for Sparse Matrix-vector Multiplication on GPUs. In: Proceed-
ings of the 28th ACM International Conference on Supercomputing. ICS ’14. New
York, NY, USA: ACM; 2014. p. 273–282.

20. Yan S, Li C, Zhang Y, Zhou H. yaSpMV: Yet Another SpMV Framework on
GPUs. In: Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPoPP ’14. New York, NY, USA: ACM; 2014.
p. 107–118.

21. Williams S, Oliker L, Vuduc R, Shalf J, Yelick K, Demmel J. Optimization of Sparse
Matrix-vector Multiplication on Emerging Multicore Platforms. In: Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing. SC ’07. New York, NY,
USA: ACM; 2007. p. 38:1–38:12.

22. Liu X, Smelyanskiy M, Chow E, Dubey P. Efficient Sparse Matrix-vector Multi-
plication on x86-based Many-core Processors. In: Proceedings of the 27th Interna-
tional ACM Conference on International Conference on Supercomputing. ICS ’13.
New York, NY, USA: ACM; 2013. p. 273–282.

23. Yang X, Parthasarathy S, Sadayappan P. Fast Sparse Matrix-vector Multiplication
on GPUs: Implications for Graph Mining. Proc VLDB Endow. 2011 Jan;4(4):231–
242.

24. Choi JW, Singh A, Vuduc RW. Model-driven Autotuning of Sparse Matrix-vector
Multiply on GPUs. SIGPLAN Not. 2010 Jan;45(5):115–126.

25. Reguly I, Giles M. Efficient sparse matrix-vector multiplication on cache-based
GPUs. In: Innovative Parallel Computing (InPar), 2012; 2012. p. 1–12.

26. Bell N, Garland M. Cusp: Generic Parallel Algorithms for Sparse Matrix and Graph
Computations; 2012. Version 0.3.0.

27. Khronos Group. The OpenCL Specification; 2011.
28. Ashari A, Sedaghati N, Eisenlohr J, Parthasarathy S, Sadayappan P. Fast Sparse

Matrix-vector Multiplication on GPUs for Graph Applications. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. SC ’14. Piscataway, NJ, USA: IEEE Press; 2014. p. 781–
792.

29. CUDA CUSPARSE Library; 2010.
30. Davis TA, Hu Y. The University of Florida Sparse Matrix Collection. ACM Trans

Math Softw. 2011 Dec;38(1):1:1–1:25.
31. Kreutzer M, Hager G, Wellein G, Fehske H, Bishop AR. A unified sparse

matrix data format for modern processors with wide SIMD units. CoRR.
2013;abs/1307.6209.

32. McLaughlin A, Bader DA. Revisiting Edge and Node Parallelism for Dynamic
GPU Graph Analytics. In: Parallel Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International; 2014. p. 1396–1406.

33. Bender MA, Farach-Colton M, Mosteiro MA. Insertion Sort is O(n log n). Theory
of Computing Systems. 2006;39(3):391–397.


