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Abstract. Abstract interpretation is an efficient means for approximat-
ing program behaviors before run-time. It can be used as the basis for
a number of different useful techniques in static analysis more broadly,
and can thus in-turn be used to prove properties needed for security or
optimization. Polyvariance represents a way of obtaining higher precision
in an abstract interpretation by producing multiple abstract states for
each function or lexical point of interest in the program. This paper ex-
plores the role of polyvariance in these analyses and how it is manifested,
unifying the disparate presentations in the literature.

1 Abstract Interpretation

An abstract interpretation is a non-deterministic interpretation of a program
that determines abstract flow-sets, each representing all possible values a given
expression could refer to during any particular concrete execution. The result is
a finite abstract state-space which conservatively approximates a usually infinite
number of different concrete state-spaces.

All valid paths in the program are guaranteed to be represented in a sound
analysis. Above and beyond these genuine executions, imprecision is manifested
as spurious traces which are indicated by the analysis but which do not exist in
any concrete execution.

1.1 CPS λ-calculus

For our survey of polyvariance, we will be using a simple language with familiar
abstract semantics at each step to stay consistent. Call-sites are marked with a
unique label which refers to its containing lambda. Consider the CPS λ-calculus:

call ∈ Call ::= (ae ae . . .)l | (halt)

ae ∈ AE ::= x | lam
lam ∈ Lam ::= (λ (x . . .) call)

x ∈ Var ::= set of program variables

l ∈ Label ::= set of unique labels



The grammar structurally distinguishes between atomic expressions and call-
sites to permit only calls in tail position. This constrains the language to a
continuation-passing-style (CPS) form. Abstract interpretation can be imple-
mented for any language so long as we have a concrete (in our case, operational)
semantics to abstract. CPS is used here (as it was in its original formulation)
purely for the purposes of simplifying our discussion. We can compactly represent
its semantics using a CES-style machine:

ς ∈ State = Call× Env × Store× Time
ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr ⇀ V alue

t ∈ Time = Label∗

a ∈ Addr = Var × Time
v ∈ V alue = Lam× Env

and a single small-step transition:

〈(λ (x1 . . . xj) call), ρ
′〉 = A(aef , ρ, σ)

((aef ae1 . . . aej)l, ρ, σ, t) ⇒ (call, ρ′′, σ′, t′)

where ρ′′ = ρ′[xi 7→ ai]

σ′ = σ[ai 7→ A(aei, ρ, σ)]

ai = (xi, t
′)

t′ = l : t

where A is a concrete atomic-expression evaluator:

A(x, ρ, σ) = σ(ρ(x))

A(lam, ρ, σ) = 〈lam, ρ〉

Each state (machine configuration) contains a call-site, a binding environment,
a value-store, and a timestamp. Each state transitions to a new state when
a function can be invoked at the current call-site, or fails to transition and
terminates when a (halt) is reached. The atomic-expression in call-position aef
is evaluated to a closure and evaluation transitions to its body, another call-
site. The closure’s binding environment is augmented with addresses for each
function-argument, and the store maps each of these to the value being bound.
Each address is guaranteed to be unique because it is being paired with the new
timestamp t′. t′ is constructed by prefixing the current timestamp with a label
for the current call-site. Because this call-history increases in length with each
transition, no two values will share a binding.

1.2 0-CFA

0-CFA is the monovariant form of the k-CFA algorithm as presented in Shivers’
seminal paper [25] [16]. We use an abstract version of our concrete semantics to
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compute a conservative approximation of program behavior. In order to make
this state-space finite, we need only to bound the size of our timestamp or call-
history. k-CFA uses a k-length approximation of call-history, and 0-CFA merges
all histories together.

As a repercussion of bounding T̂ ime, multiple values will now share a single
address. Our abstract store maps addresses to flow-sets: sets of abstract values.
All possible values for a particular variable now share the same address:

ς̂ ∈ Ŝtate = Call× Ênv × Ŝtore× T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂ alue)

t̂ ∈ T̂ ime = Label0

â ∈ Âddr = Var × T̂ ime

v̂ ∈ V̂ alue = Lam× Ênv

The abstract transition function is non-deterministic, as multiple closures can
be referenced by a single variable:

〈(λ (x1 . . . xj) call), ρ̂
′〉 ∈ Â(aef , ρ̂, σ̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, ()) ≈> (call, ρ̂′′, σ̂′, ())

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂)]

âi = (xi, ())

The abstract atomic-exppression evaluator returns flow-sets:

Â(x, ρ̂, σ̂) = σ̂(ρ̂(x))

Â(lam, ρ̂, σ̂) = {〈lam, ρ̂〉}

When discarding typographical differences, the two semantics are almost identi-
cal. There are essentially only two fundamental changes we’ve made to achieve a
finite approximation: we use a finite set of abstract addresses to bound the size
of our store, and introduce merging between values at each address. If we were
including other basic types, we could also replace them with a finite abstraction.
An unbounded set of numbers might become just {num} to differentiate from
other basic types, or perhaps elaborated slightly to {+, 0,−} in order to perform
a sign analysis.

In our case, the only types involved are closures, which thanks to our ab-
straction for addresses, are now drawn from a finite set. These however, are now
being merged together at bindings in our abstract store. Where before we indi-
cated a strong-update of our concrete store, we now use function-join to indicate
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merging sets of values together via set-union. In this way, all values which have
have ever been bound to an address are kept. In 0-CFA there is a single address
for each program-variable. If some argument z is bound to 3 different closures in
our analysis, all 3 need to be represented by the same address z upon completion
[29].

1.3 Soundness

Soundness of an abstract interpretation entails showing that all possible concrete
executions are represented by the final analysis in general, for all inputs. Its

embarrassing imprecision notwithstanding, λx.V̂ alue is an example of a trivially
sound store because it does indeed represent all possible flows in any concrete
execution of any program.

Showing that a more precise analysis is sound in general involves introducing
a bit more machinery we won’t bother with fully, and so we’ll not attempt to
do more than give a very rough sketch of the proof here. A proof of soundness
relies on defining the relationship between the concrete and abstract domains.
This relationship is a pair of functions for abstraction and concretization known
as a Galois Connection. Previous work has shown the use of this model in both
proving an existing analysis sound, and in producing analyses which are correct
by construction. Methods have been developed for automatically constructing
abstract approximations of concrete machines through the composition of these
Galois Connections [29] [15] [12].

To specify the correspondence between our abstract semantics and our con-
crete semantics, we would need to provide at least an abstraction function α
which maps concrete states to their most precise abstract representative:

α : State→ Ŝtate

With this specification we can prove a statement for each concrete tran-
sition ς ⇒ ς ′, there exists an abstract transition ς̂ ≈> ς̂ ′ such that α(ς) v ς̂
and α(ς ′) v ς̂ ′ which shows that simulation is preserved across transition. The
soundness proof for k-CFA has been published for both a denotational [25] and
an operational [16] style of semantics.

1.4 Complexity

Termination is guaranteed because the search is being performed over a finite
state-space.

0-CFA is known specifically to be of worst-case cubic complexity. To deter-
mine whether or not an abstract closure flows to a variable, requires examining
at most each call site in the program O(n). There are then at most O(n) ∗O(n)
of these possible flows because the number of variables is bounded by the size of
the program, as is the number of lambdas [16]. The number of abstract closures
in the monovariant analysis is the same as the number of lambdas since each

4



abstract binding environment is fixed by the free variables in its function which
can be determined lexically.

VanHorn and Mairson reduce the circuit value problem to an instance of the
0-CFA control flow problem, proving it to be PTIME-hard [27].

2 Polyvariance

In 0-CFA, each syntactic callsite is represented by a single abstract state. Poly-
variance, in general terms, is the degree to which an analysis breaks up these
syntactic points in the program and represents them with multiple differentiated
abstract states.

2.1 k-CFA

k-CFA is the broader heirarchy of algorithms to which 0-CFA belongs. All forms
of this algorithm where k ≥ 1 represent increasingly polyvariant analyses. k-CFA
differentiates states with the addition of an abstract history, or calling-context,
referred to in its original presentation as an “abstract contour” [25].

The semantics below introduce a k-length calling-context t̂ at each state
which serves to differentiate like variables with unlike calling histories. Each
calling-context is a tuple of call-site labels which represents the abstract history
of calls that lead to a given state. The state’s successors then get a calling-
context which has lost its oldest callsite, and has been appended with the label
for the most recent callsite. This new history is then included in the abstract ad-
dresses for these new states, differentiating their flow-sets and giving our binding
environment a purpose for the first time.

ς̂ ∈ Ŝtate = Call× Ênv × Ŝtore× T̂ ime

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr ⇀ P(V̂ alue)

â ∈ Âddr = Var × T̂ ime

v̂ ∈ V̂ alue = Lam× Ênv

t̂ ∈ T̂ ime = Labelk

〈(λ (x1 . . . xj) call), ρ̂
′〉 ∈ Â(aef , ρ̂, σ̂) t̂ = (l1 . . . lk)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂
′)

t̂′ = (l l1 . . . lk−1)

5



A state (calll9 , ρ̂, σ̂, (l2 l5 l6)) would mean that l9 could be reached by a
call from l2, when reached after a call from l5 and so-forth. A calling-context like
this if found in an address (x, (l2 l5 l6)) would indicate that the values stored at
this address were bound to x following the above history. Values in k-CFA are
only merged once the fixed amount of call-history has been exceeded.

Consider an example where there are two calls of indirection in front of a
function:

(λx. (λy. (λz. . . .) y) x)

Here, if x is bound to two different values in a 2-CFA analysis, by the time they
reach z, the original context for the call to λx will have been lost and the values
will be merged. If multiple values reach a recursive function, no matter how
long a context is used, the values will eventually merge assuming the analysis
cannot determine a bound on the calling depth before the context runs out.
Using sufficiently precise abstract values to make this possible in the general
case would tend to make the analysis impractical to compute.

2.2 Exponential complexity for k ≥ 1

The use of these call-string histories pays dividends where unlike call-sites pro-
vide a lambda with unlike abstract values. Where the history used is sufficient to
capture these differences, they will be kept apart in the store, avoiding the usual
merging and loss of precision. The major downside of k-CFA for k ≥ 1 is that
its precision against run-time trade-off comes at too great a price: polyvariant
k-CFA is intractible for real world inputs.

Though long suspected, the proof that k-CFA is EXPTIME-complete came
only recently in another work by Van Horn and Mairson [27].

3 Object Sensitivity

Object Sensitivity is an alternative notion of context for object-oriented lan-
guages which can be used in place of call-string histories or in conjunction with
them [21]. There are various presentations of this strategy with subtle differences.
The flavor which best fulfills the original intentions of the technique, and which
has appeared most effective in practice is k-full-object-sensitivity by Smarag-
dakis, Bravenboer, and Lhotak [26]. This method differentiates argument-bindings
by the allocation-history of a member-function’s receiving object. This requires
syntactic allocation-points to be stored inside the abstract representation of an
object upon creation, so they can be retrieved later when one of its methods is
invoked. When k = 0, object-sensitivity is equivalent to 0-CFA.

Consider a 1-full-object-sensitive analysis of Java. The abstract value for an
object will store its allocation-point internally and when a method is invoked on
the object, its bindings are made specific to this saved context. Take for example:

Object obj = new Object();l3
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The abstract value which flows into obj contains an allocation-history (l3). When
a method obj.m(. . .) is invoked, its bindings are unique to this program-point.

To extend this strategy to deeper levels of context sensitivity, we include
allocation-history from the object which performs the allocation. If we instead
wish to perform a 3-full-object-sensitive analysis on the same program, our ad-
dtional context is drawn from the variable this at the allocation-site. For exam-
ple, if this contains an allocation-history (l8 l4 l9), the variable obj is represented
by an object with a timestamp (l3 l8 l4).

3.1 Closure Sensitivity

We cannot easily modify our previous analysis to faithfully represent true object-
sensitivity because the CPS λ-calculus does not include objects or classes. In-
stead we present a purely functional analog of this technique we call closure-
sensitivity. Just as object instances are the building blocks of object-oriented
programs, closures are the building blocks of functional programs. Objects can
be implemented as a closure which accepts an additional parameter for selecting
the method to invoke. Likewise, flat-closures can be implemented as an object
with a single method. The allocation-point of a function is thus the syntactic
position of the lambda, its point of closure-creation.

With this in view, we can produce a context-sensitve analysis of our language
where abstract closures directly contain their allocation history.

v̂ ∈ V̂ alue = Lam× Ênv × T̂ ime

Instead of appending a label for the current call-site to our timestamp, an ab-
stract transition simply pulls the allocation-context out of our closure and uses
this for new bindings.

〈(λ (x1 . . . xj) call), ρ̂
′, t̂′〉 ∈ Â(aef , ρ̂, σ̂, t̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂, t̂)]

âi = (xi, t̂
′)

When a lambda is atomically evaluated, this allocation-point is combined with
the current context and stored inside the abstract closure. This requires a slight
modification so the current context t̂ is available to the atomic-expression eval-
uator:

Â(x, ρ̂, σ̂, t̂) = σ̂(ρ̂(x))

Â(laml, ρ̂, σ̂, (l1 . . . lk)) = {〈lam, ρ̂, (l l1 . . . lk−1)〉}

This analysis has the same fundamental complexity as k-CFA, but where call-
sensitivity causes merging, closure-sensitivity might not and vice versa. As the
basic technique has proved more effective than k-CFA in practice for languages
like Java [26], our analog may have something to offer in the functional realm.
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4 The Cartesian Product Algorithm

The Cartesian Product Algorithm (CPA) was originally introduced as an en-
hancement to a type inference algorithm which itself can be viewed as a spe-
cialization of the abstract interpretation concept: one where dynamic program
types are used as constituents of the abstract value domain. We will present the
source of imprecision that the original formulation attempts to address, gener-
alize the solution as a form of polyvariance in abstract interpretations (as was
suggested in publications which followed), and discuss CPA’s complexity and
precision relative to k-CFA.

4.1 The Problem / Original formulation

In an abstract interpretation using types for values, where polymorphism is
non-existent each flow-set could contain a maximum of one value each, and the
algorithm reduces to a straightforward type-inference. Therefore, the authors of
CPA introduce it as an enhancement to a basic flow-set based type-inference
algorithm where polymorphic functions introduce merging and thus spurious
concrete variants. They turn a single polymorphic call in the analysis into mul-
tiple monomorphic calls, preserving the precise values across function calls, and
their inter-argument relationships.

The basic algorithm that CPA enhances works similarly to an abstract in-
terpretation over types. It also assigns a flow-set of dynamic types for each
variable in the program, but it then establishes constraints based on the pro-
gram text, and propagates values until all these constraints have been met. The
primary method for overcoming this merging, is introduced as the p-level expan-
sion algorithm of Palsberg and Schwartzbach – a kind of type-inference analog
to call-string histories in k-CFA, where the use of p parallels that of k. This is
shown to be insufficient however, as the authors of CPA give a case of merg-
ing which cannot be overcome by any sized p. Their motivating example is the
polymorphic max function:

max(a, b) = if a > b then a else b

Here, the only constraint for an input to max is that it support comparison,
so a call max(“abc”, “xyz”) makes as much sense as a call max(3, 5). However,
if both these calls are made with a sufficient amount of obfuscating call-history
behind them, merging will cause the flow-sets for both a and b to each include
both string and int. This is imprecise as it implies that a call max(int, string)
is possible when it is not.

The solution that CPA proposes is to replace flow-sets of per-argument types,
with flow-sets of per-function tuples of types. In such an analysis, the func-
tion max itself would be typed {(int, int), (string, string)} preserving inter-
argument patterns and eliminating spurious concrete calls like (int, string) [1].
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4.2 Abstract contour formulation

In essence, this change makes flow-sets for each argument specific to the entire
tuple of types received in a call. This suggests an abstract contour representation
which pairs variables with tuples of abstract values in the store, instead of pairing
them with call histories as in k-CFA [17].

Ŝtore = Âddr ⇀ V̂ alue

T̂ ime = V̂ alue
∗

This would seem to maintain perfect precision; exact values would be known
for any given address. The problem with this approach is that it introduces
recursion into our state-space making it again unbounded. Closures contain en-
vironments containing contours made of closures. Our analysis again becomes a
concrete interpreter using arbitrarily precise values to differentiate one another
in the store.

To faithfully extend this algorithm to a higher-order language, in the spirit
of its original presentation, we reduce abstract values to their types. An abstract
value like string could potentially remain as it is, but closures must be limited to
a finite set of types. We’ve chosen to reduce them to only their syntactic lambda,
merely dropping environments, on the assumption that this point in the program
is associated with a single type signature – whether it is known pre-analysis or
not.

Ŝtore = Âddr ⇀ P(V̂ alue)

T̂ ime = P(T̂ ype)∗

T̂ ype = Lam

A helper function can be defined which performs this reduction:

T̂ : P(V̂ alue)→ P(T̂ ype)

At each call, a new contour is formed by reducing each of the flow-sets of the
atomically-evaluated function arguments:

〈(λ (x1 . . . xj) call), ρ̂
′〉 ∈ Â(aef , ρ̂, σ̂)

((aef ae1 . . . aej)l, ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂
′)

t̂′ = (T̂ (Â(ae1, ρ̂, σ̂)) . . . T̂ (Â(aej , ρ̂, σ̂)))

The semantics for a CPA-like abstract interpretation are fundamentally that of

k-CFA with the exception that our abstract contours in T̂ ime are now tuples of
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abstract values. This preserves the exact flows from function to function and the
only merging now possible is exists in the predetermined merging inherent to
our abstract values. Essentially, each abstract address is already specific to the
exact abstract value it points to in the store, thus flows are no longer sets, and
non-determinism can no longer occur at a call-site. Non-determinism would in
practice be reintroduced by the addition of practical language constructs such
as primitive operations on basic values, conditionals/if-statements, etc. Each of
these would need abstract transition rules which produce multiple monomorphic
abstract calls as opposed to making a single call which sends a set of abstract
values.

4.3 Precision and Complexity

It is straightforward to see intuitively that CPA is more precise than k-CFA,
as is discussed in the original publication. For any pre-determined value of k, a
program can be constructed which nests calls passed this call depth and causes
merging. Any such merging, even when completely precise at the level of a par-
ticular argument, can produce spurious inter-argument patterns. CPA on the
other hand differentiates functions directly based on the full tuple of arguments
they receive and obtains perfect precision for a given finite set of abstract values.

That no length call-history can match the precision of CPA has also been
formally demonstrated on an object-oriented language [2]. It is important to note
that k-CFA contains context information which CPA does not and which might
be useful for its own sake. k-CFA may also be more general and amenable to
infinitely wide value domains, while CPA may rely more directly on the finiteness
of the abstract values used to ensure computability.

CPA is of-course, like k-CFA, of exponential complexity, and exceedingly im-
practical for use on sufficiently complex input programs. Somewhat ironically,
where CPA improves precision, it is also fastest, and where CPA is unnecessary
and delivers no improvement over k-CFA, it is enormously inefficient. For a func-
tion like max, one where the types of the arguments should match, CPA might
require as few as one flow per-type; just as with k-CFA, except carries a vast
improvement in precision. For a function where all combinations of arguments
are possible, CPA requires each to be explicitly made, while k-CFA implies them
for equal precision at far greater efficiency.

5 Practical Polyvariance

In contrast to CPA’s attempt to improve on the precision of abstract call-string
histories, attempts have been made to bring a degree of call-string history poly-
variance to an analysis without incurring the full cost of 1-CFA.

5.1 Polymorphic Splitting

Polymorphic Splitting is a compromise between 0-CFA and k-CFA where the
length of the contour used varies on a per-function basis. Lambdas which have
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been let-bound are analyzed with a contour length 1-greater than that of their
parent expression. In this way, let-bindings can be used as a heuristic for guiding
the length of the contour used within a function during analysis. Because the
number of let forms within-which an expression can be nested is bound by the
program’s size, the maximum length of k is likewise fixed.

In order to give a semantics for polymorphic splitting which will work on our
simple language, make it quickly understandable to the reader, and comparable
to the other analyses discussed here, we imagine our program has been CPS-
converted from a direct-style language with a let-form, and we add a k annotation
to call-sites which indicate their function’s let-depth:

call ∈ CALL ::= (ae . . .)lk

This annotation can then be used to direct the amount of polyvariance used in
our abstract transition:

〈(λ (x1 . . . xj) callk′), ρ̂′〉 ∈ Â(aef , ρ̂, σ̂) t̂ = (l1 . . . lk)

((aef ae1 . . . aej)lk′′ , ρ̂, σ̂, t̂) ≈> (call, ρ̂′′, σ̂′, t̂′)

where ρ̂′′ = ρ̂′[xi 7→ âi]

σ̂′ = σ̂ t [âi 7→ Â(aei, ρ̂, σ̂)]

âi = (xi, t̂
′)

t̂′ = (take (l l1 . . . lk) k′)

Â(x, ρ̂, σ̂) = σ̂(ρ̂(x))

Â(lam, ρ̂, σ̂) = {〈lam, ρ̂〉}

We have added a subscript k′ to the call-site found in a closure for aef which
determines the length of the contour we’ll use for our new argument bindings.
The function (take lst n) removes all but the first n entries from lst.

This presentation of polymorphic splitting may perhaps introduce a confusion
as to how we know that k′ is not greater than k+1; that there is enough history
for us to use at each transition. This concern is unlikely to arise from looking at
the original semantics. We know a call into a let-bound function is unreachable
above that let form’s body, and since that let form’s body shares the contour
length of its parent expression, it can be at most one less than the contour length
of the let-bound function.

The complexity of polymorphic spitting remains exponential, as it easily
devolves into doing all the work of a k-CFA analysis in the worst-case, however
it has been empirically shown to be practical for sizable benchmarks. The authors
found its precision comparable to that of a 1-CFA, while its running times were
closer to that of 0-CFA. That it even beat the running time for 0-CFA in some
test-cases can be attributed to its higher precision culling spurious paths which
would have otherwise been explored by the monovariant analysis [30].

11



5.2 Polynomial-time 1-CFA

Polynomial-time 1-CFA differentiates each state with a single call history, as 1-
CFA does, but only allows free variables in a closure’s environment to remember
this history for a single closure creation deep. Each time a function is called, its
abstract contour is updated and all the flows for its free variables are propagated
to the new history for that call. They then share a history with the latest ar-
guments to be sent in all new closures created. An environment in this analysis
boils down to the single abstract contour it maps all variables onto. We simplify
this and pair lambdas directly with a single contour to form a closure:

ς̂ ∈ Ŝtate = CALL× Ŝtore× T̂ ime

v̂ ∈ V̂ alue = LAM× T̂ ime

t̂ ∈ T̂ ime = Label

〈(λ (x1 . . . xj) call), t̂
′
b〉 ∈ Â(aef , t̂, σ̂)

((aef ae1 . . . aej)l, σ̂, t̂) ≈> (call, σ̂′, t̂′)

where σ̂′ = σ̂ t [(xi, t̂
′) 7→ Â(aei, t̂, σ̂)]

t
⊔
{[(y, t̂′) 7→ Â(y, t̂b, σ̂)] | y ∈ free(call)}

t̂′ = l

Â(x, t̂, σ̂) = σ̂((x, t̂))

Â(lam, t̂, σ̂) = {〈lam, t̂〉}

Because the closure is updated at each call, the binding environment previously
in the second position of our abstract state is redundant with the single call-
history in the final position, so we omit it. Likewise, the creation of a new
binding environment (previously called ρ̂′′) is no longer needed as it was in k-
CFA since it would simply be set to λ .t̂′ and so is subsumed here by t̂′ itself.
Our updated store is one joined with the bindings formed by the function call,
along with bindings which propagate values for the free variables in the function
to their new contour.

Polynomial-time 1-CFA improves on 0-CFA in many of the usual places.
Function parameters given different values at different callsites are analyzed
polyvariantly. Where it compromises as compared with full 1-CFA is in the ad-
dresses used for free variables. When a function is closed over its free variables,
they are differentiated by the call-history of the containing lambda. Upon invo-
cation however, these values are propagated to addresses using the most recent
callsite. This means if we call a function λx.λy.x more than once, we may obtain
multiple different abstract closures, but if we invoke each of them at the same
callsite l, all these variants of x will be merged together into an address (x, l).

Polynomial-time 1-CFA has not yet been empirically investigated, but its
complexity has an upper bound of O(n6) [8].
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6 The Future

The potential for new explorations into this area looks bright. The recent paper A
posteriori soundness by Might and Manolios [20] has provided an exceptionally
general guarantee of soundness for abstract allocation functions which allows
for nearly any form of merging or differentiation in the store which could be
conceived. Even methods which tune a live analysis directly for precision are
allowed for, so no fully pre-defined strategy would even be necessary.

6.1 A posteriori soundness

The usual process for demonstrating the soundness of an abstract interpretation
is a priori in the sense that the concrete and abstract transition relations along
with the abstraction map relating the two state-spaces have been defined in
advance, and are then justified as sound before any analysis is produced. A pos-
teriori soundness differs from this in that a portion of the justifying abstraction
map cannot be known until after the analysis is run.

The a posteriori soundness proof relies on factoring apart the concrete seman-
tics, abstract semantics, and their correspondence. A portion of the abstraction
map α is isolated which represents the correspondence between concrete ad-
dresses and abstract addresses: αL. A portion of the transition relation is also
factored out which represents the process of producing bindings. The abstract
transition relation can then be parameterized by an allocation-policy π̂ which
determines this process for a given abstract state. The crux of the argument is
then that given a non-deterministic selection of π̂, a justifying αL can always
be produced after the fact, which proves the prior selection sound – whatever
it might have been. This means that so long as the remaining analysis follows
a single liberal soundness condition: the choice of allocation policy π̂ is entirely
arbitrary as far as the correctness of the analysis is concerned [20].

6.2 Precision-adaptive analyses

The implication of this is that the allocation policy π̂ of an abstract interpre-
tation can be selected entirely with precision and complexity in view. A policy
can even adapt to the source text itself to make these choices without soundness
needing to be proven for each specific program. If soundness needed to be proved
a priori, this would not be possible since the mechanics of the proof would rely
upon aspects of specific programs which could not be known in advance. The
work thus not only simplifies deciding that a new form of polyvariance would be
sound, but makes it possible to produce polyvariant analyses which use different
amounts of history for different functions, different kinds of history for different
functions, and which make these decisions while the analysis is still live.
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7 Conclusion

The concept of polyvariance in abstract interpretations covers a wide array of
techniques which allows for an analysis to be tuned up or down along the preci-
sion/complexity trade-off. Merging and differentiation of flow-sets in the store,
beyond one address per variable, requires a value on which to base the differen-
tiation: in the case of k-CFA this is Shivers’ abstract contour. It has since been
proved that any basis for differentiation which obeys a single liberal constraint
will remain sound, and a number of specific variants on the traditional contour
have already been discussed in the literature each offering a unique trade-off in
precision.

This material is based on research sponsored by DARPA under agreement
number FA8750-12-2-0106 (Automated Program Analysis for Cyber Security).
The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.
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