
Size-Change Termination as a Contract
Dynamically and Statically Enforcing Termination for Higher-Order Programs

Phúc C. Nguyễn
University of Maryland
College Park, MD, USA

Thomas Gilray
University of Alabama
Birmingham, AL, USA

Sam Tobin-Hochstadt
Indiana University

Bloomington, IN, USA

David Van Horn
University of Maryland
College Park, MD, USA

Abstract
Termination is an important but undecidable program prop-
erty. This situation has led to a large body of work on static
methods for conservatively predicting or enforcing termi-
nation. One such method is the size-change termination ap-
proach of Lee, Jones, and Ben-Amram, which operates in
two phases: (1) abstract programs into “size-change graphs,”
and (2) check these graphs for the size-change property: the
existence of paths that lead to infinite decreasing sequences.

We transpose these two phases with an operational se-
mantics that accounts for the run-time enforcement of the
size-change property, postponing (or entirely avoiding) pro-
gram abstraction.This choice has two key consequences: (1)
size-change termination can be checked at run-time and (2)
termination can be rephrased as a safety property analyzed
using existing methods for systematic abstraction.

We formulate run-time size-change checks as contracts
in the style of Findler and Felleisen. The result compliments
existing contracts that enforce partial correctness specifica-
tions to obtain the first contracts for total correctness. Our ap-
proach combines the robustness of the size-change principle
for program termination with the precise information avail-
able at run-time. It has tunable overhead and can check for
nonterminationwithout suffering from the conservativeness
necessary in static checking. To obtain a sound and com-
putable termination analysis, it is possible to apply exist-
ing abstract interpretation techniques directly to the oper-
ational semantics without requiring an abstraction tailored
to size-change graphs. Using the higher-order symbolic ex-
ecution method of Nguyễn et al., we obtain a termination
analysis that is competetive with existing, purpose-built ter-
mination analyzers for higher-order languages.

CCS Concepts • Software and its engineering → For-
mal software verification; Functional languages;

ACM Reference Format:
Phúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David
Van Horn. 2018. Size-Change Termination as a Contract: Dynam-
ically and Statically Enforcing Termination for Higher-Order Pro-
grams. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, Article 1, 17 pages. https://doi.org/

1 Size-change contracts
A fool’s errand Imagine for a moment there existed a run-
time mechanism for checking whether a program, in its cur-
rent state, will run forever or eventually terminate. Such
a check would be eminently useful. Any run-time mecha-
nism for enforcing partial correctness could easily be made
to enforce total correctness by use of this check. Moreover,
static verification of termination would boil down to prov-
ing these run-time checks always succeed, much like how
type systems prove run-time tag checks always succeed.

Of course, whether a program eventually terminates is
one of the most useful, yet fundamentally and famously un-
knowable, properties of programs [13, 42]. Moreover, due to
its nature as a liveness property—it cannot be violated in a
finite execution—it cannot be directly checked at run-time.

An indirect tack Despite this situation, an indirect partial
solution is possible by instead considering a safety property
that implies the liveness property. Enforcing such a safety
property at run-time would ensure a nonterminating pro-
gram would eventually “go wrong” by violating the safety
property, at which point it could be stopped. The one, un-
avoidable, wrinkle is that there will be some programs that
run astray of the safety property, despite eventually termi-
nating. In this approach, static verification of termination
could, as suggested before, be phrased and designed just as
any other safety verification problem by proving the impos-
sibility of a run-time check failure.

A safety property for termination To design a run-time
termination checker, the critical question is: what is a good
safety property to enforce that implies termination? One
promising candidate is the so-called size-change principle
of Lee et al. [24]. The principle has already proved useful
in static termination checking and has a well understood
theory. Unfortunately, the original size-change for termina-
tion work, which was developed for static verification, de-
fines the size-change principle as a property of a program
abstraction: a set of so-called size-change graphs (roughly
a program call graph annotated with information about de-
creasing or non-ascending data flows between function pa-
rameters).

https://doi.org/

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

This paper We propose a run-time check inspired by the
size-change principle for program termination that dynami-
cally builds and checks precise size-change graphs. This dy-
namic mechanism is useful in its own right, but also can
be used as a semantic basis for designing static termination
checkers. Such static checkers can benefit from advances
in static analysis techniques, particularly in abstract inter-
pretation, since termination checks are integrated into the
language specification and do not require purpose-built ab-
stractions or algorithms.

We formalize a size-change-principle-enforcing semantics
for a core higher-order functional language that ensures all
programs terminate (§3). Moreover, we introduce a behav-
ioral software contract, in the style of Findler and Felleisen
[14], that enables the selective enforcement of size-change
termination. Such a contract, when combined with tradi-
tional pre- and post-condition contracts, contributes a no-
tion of contracts for total-correctness.

We also develop a static termination checker (§4) by ap-
plying the static contract verification technique of Nguyễn
et al. [29] to the size-change semantics. The resulting tool
has no termination analysis specific abstractions, it simply
treats the size-change principle check as it would any run-
time check, and yet an empirical evaluation (§5) demonstrates
it is competitive with several state-of-the-art purpose-built
termination analyzers: Liquid Haskell, Isabelle, and ACL2.

Contributions This paper contributes:

1. a semantic account of the size-change principle,
2. a proved-correct contract for size-change-based ter-

mination of functions,
3. an implementation technique that preserves proper

tail-calls and enables tunable run-time overhead, and
4. a static termination checker obtained by generic ab-

stract interpretation techniques.

2 Examples and intuitions
This section develops intuitions for how dynamic checking
of size-change termination (SCT) works via worked exam-
ples. We begin by sketching how SCT works in the original
static setting of Lee et al. [24].

2.1 The factorial of termination papers
Consider the Ackermann function, the standard-bearer of
examples for papers on termination due its simplicity as a
total—but not primitive recursive—function, presented here
in Scheme notation:

1 (define (ack m n)
2 (cond [(= 0 m) (+ 1 n)]
3 [(= 0 n) (ack (- m 1) 1)]
4 [else (ack (- m 1)
5 (ack m (- n 1)))]))

For themoment, assume the function is only applied to natu-
ral numbers. Under that assumption, ack always terminates
and the SCT method suffices to prove it.

Safe size-change graphs: Theapproach starts by using some
form of program analysis or abstract interpretation to enu-
merate the ways in which a call to ack could result in a sub-
sequent call to ack before returning. We can see there are
three potential recursive calls within the function definition
on lines 3, 4, and 5. For each of these calls, describe the pair-
wise relations between the arguments of the call and recur-
sive call in terms of their size. (The original SCT approach as-
sumes the language has only well-founded data types with
a known partial order.)

So for example, consider the possible call:

(ack m n) { (ack (- m 1) 1).

There are two parameters, so we consider four possible size-
change relations between the inputs and recursive call. It is
clear that the m parameter is strictly smaller in the recursive
call compared to the input of the original call. This change
is described with a “size-change graph,” {(m →

m)}, which is
a binary relation saying that whatever value is given for m
in the original call will become a strictly smaller argument
m in the recursive call. But there is no size-change relation
between the original input n and recursive parameter m or n,
nor between the original m and recursive n, which we know
is 1: each could become larger, smaller, or stay the same.

Moving on to the call in line 5:

(ack m n) { (ack m (- n 1)),

we can see that m is unchanged and n is strictly smaller be-
tween calls (but there’s no relation between m and n), so we
describe this call with the graph: {(m → =

m), (n →

n)}, which
says m is non-ascending and n is descending.

Finally, consider the call in line 4:

(ack m n) { (ack (- m 1) …),

where the elided code is the nested call to ack of line 5. Here
it is clear that m strictly descends, but unclear what happens
with n. So we can describe this call with the size-change
graph as used for the call in line 3.

At this point, we have a sound collection of size-change
graphs for all possible successive calls to ack.They are sound
since they properly account for all possible strict descent
or non-ascending transitions that occur in recursive calls
at run-time. As a side note: it is always safe to omit graph
arcs (potentially losing sufficient evidence to prove termi-
nation), but all arcs included in a graph must soundly over-
approximate all possible run-time behaviors.

Size-change principle: The next task is to check this set
of graphs for the size-change termination principle (SCP) to

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

see if every infinite computation would give rise to an in-
finitely decreasing value sequence, according to the size-
change graphs. To do this, we consider closing the set of
graphs under sequential composition of size-change graphs.
The sequential composition of two graphs models two suc-
cessive calls to construct the size-change from the first to
last call, and is defined, informally, as follows: there is a
strict descending arc between two parameters, if there exists
a path between the parameters containing a strict descent;
there is a is a non-ascending arc if there exists a path con-
taining only non-ascent arcs. Otherwise, there is no path.

Coincidentally, the set of graphs for ack is already closed
under sequential composition, but to see an example, here’s
the sequential composition of calling ack on line 3 (or 4)
followed by ack on line 5:

{(m →

m)}; {(m → =
m), (n →

n)} = {(m →

m)},

which is equivalent, in terms of size-change, as calling ack
on line 3 (or 4).

Once closed, we check each size-change graph to see if it
1. is idempotent, i.e. 𝑔; 𝑔 = 𝑔, and
2. lacks a self descending arc, i.e. (𝑥 → 𝑥) for some pa-

rameter 𝑥.
If such a graph exists, it represents a potential sequence of
calls that can be iterated infinitely often with no descent
and thus it violates the size-change principle. If it lacks such
a graph, the program terminates. In the case of ack both
graphs contain self-descending arcs and therefore terminates.

Dynamic size-change graphs: Having established the ba-
sic notions of the static SCT approach, we now turn to a
dynamic approach to monitoring size-change termination.

The main idea is that rather than rely upon a program
analysis to enumerate the various ways a function may call
itself, we simply run the program and observe such calls.
Each time a function invokes itself, a size-change graph is
dynamically generated. Throughout a computation, the call
sequence of size-change graphs is accumulated. Before en-
tering a function call, the current call sequence is checked
for the size-change principle. If it is violated, the program is
stopped and an error signalled; otherwise the call proceeds.

Any program violating the size-change principle eventu-
ally accumulates a call sequence witnessing the violation;
any programmaintaining the principle eventually terminates.

In a similar vein, we need not rely on static analysis to
infer the size-change relation between arguments. At run-
time, there are concrete values available at both the call
and recursive call site. Inferring the size-change graph boils
down to checking a partial order pairwise on the arguments.
This is both easy to do and potentially much more precise
than the static approach. For example, there may be size-
change relations that hold on the particular path of execu-
tion under scrunity, which do not hold in general.

(ack 2 0)

{(m

→

m),(m
→

n)}

(ack 1 1)

{(m

→=m),(m

→

n),(n

→=m),(n

→

n)}

(ack 1 0)

{(m

→

m),(m
→=n),(n

→=m)}

(ack 0 1)

{(m

→

m),(n

→

m)}

(ack 0 2)

Figure 1. Calls and size changes for (ack 2 0)

To make things concrete, reconsider ack. When switch-
ing perspectives to the dynamic setting, we are no longer
concerned with proving termination for all possible execu-
tions of the function, but ratherwith a particular application.
Consider (ack 2 0). The complete tree of call sequences
and generated size-change graphs is shown in Figure 1, but
let us step through its construction. In calling (ack 2 0),
control reaches the recursive call on line 3, so we have the
call sequence:

(ack 2 0) { (ack 1 1),

fromwhich we can read off the size-change graph. Just as in
the static case, we have (m →

m), but additionally, we know
that (m →

n). This fact does not hold in all runs of ack, but it
holds in this one.

Aside: it is worth noting that this additional program fact
is not necessary in this particular example. After all, we
have statically proven ack terminates in all cases using less
information. But for the purposes of illustration, we can see
that more information is available at run-time; and in princi-
ple, it is possible to safely execute size-change terminating
programs that are not statically verifiable, just as by anal-
ogy it is possible to dynamically monitor type safety of pro-
grams that do not trigger run-time type errors, yet are stat-
ically ill-typed.

Returning to the example: having generated the graph
for this call, we then check the SCT principle for the active
sequence of calls; in this case there is just the one graph:
{(m →

m), (m →

n)}, which satisfies the size-change property,
so execution proceeds.

Now (ack 1 1) reaches the else branch and first invokes
a recursive call to (ack 1 0) on line 5. This call generates
the graph {(m → =

m), (m →

n), (n → =
m), (n → =

n)}. We now
check the size-change graphs of the sequence leading to this
point, i.e., the size-change graphs of:

(ack 2 0) { (ack 1 1) { (ack 1 0),

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

and determine if the size-change property holds, which it
does. Now (ack 1 0) reaches (ack 0 1)with graph {(m →

n), (n →

m), (m → =
m), (n → =

n)}, and the call sequence still sat-
isfies SCP. At this point (ack 0 1) terminates with 2. This
brings control back to the evaluation of (ack 1 1), which
is now ready to proceed to second call to ack on line 4 with
the arguments (ack 0 1). At this point, we have the call
sequence:

(ack 2 0) { (ack 1 1) { (ack 0 2).

Note the calls to (ack 1 0) and (ack 0 1) are no longer
active since they have returned. Again we check the SCP of
the size-change graph sequence for active calls, which holds
and the program terminates.

A sometimes-buggy Ackermann: We have seen how run-
time SCT monitoring works for programs that maintain the
size-change principle, but what about buggy programs that
do not? Consider the ack example, but change the call on
line 4 from (ack (- m 1) …) to (ack m …). Computing
(ack 2 0) would proceed as before until reaching the call
on line 5, corresponding to the right branch of the tree in
Figure 1, i.e. representing the call sequence:

(ack 2 0) { (ack 1 1) { (ack 1 2),

whose last size-change graph is now {(m → =
m), (n → =

m)}. But
this graph is idempotent and contains no self-descents, so at
the point of this call a size-change violation is signalled.

2.2 Keeping closures in order
The original formulation of SCT was for a first-order func-
tional language with a well-founded partial order for values.
Thiswas done largely to simplify the first phase of static SCT
verification where call-graphs and size-change relations are
generated. In a higher-order language, computing a call-graph
is itself a significant, extensively studied problem [27]. How-
ever, in the dynamic formulation, higher-order functions do
not pose a serious challenge since calls are observed as they
occur.

The one remaining issue concerns the choice of partial or-
der for functions. We make a simple choice and consider all
closures to be incomparable. Consequently, no termination
proof goes through by an argument about closure size. This
is not to say that all programs that use higher-order func-
tions will be rejected by the size-change monitor, just that
they must have some descent on base values between calls
to the same function. Our empirical evaluation (§5) confirms
this is a reasonable choice. To illustrate, let us consider a pro-
gram that recursively accumulates a closure and eventually
applies it in the base case of the function.

Consider a len function for lists, written in CPS:
1 (define (len l) (loop l (𝜆 (x) x)))
2 (define (loop l k)
3 (cond [(empty? l) (k 0)]

4 [(cons? l)
5 (loop (rest l) (𝜆 (n) (k (+ 1 n))))]))

Static analysis of size-change termination relies on an un-
derlying control-flowgraph,whichmust eventually conflate
all closures generated on line 5, regardless of call-sensitivity.
This results in a spurious loop where each closure bound to
kmay appear to call one with a larger argument, failing the
size-change principle.

Dynamic checking of size-change termination does not
have this problem, because all the closures are exact and dis-
tinct. Even though the number of closures is arbitrary, they
are finite up to the previous loop descending on l, which
has been proven to terminate. The call sequence for (len
'(2 1)), which is a sequence of tail-calls:

(len '(2 1)) { (loop '(2 1) (𝜆 (x) x)) {

(loop '(1) 𝑘1) { (loop '() 𝑘2) {

(𝑘2 0) { (𝑘1 1) { ((𝜆 (x) x) 2) { 2

The recursive calls of loop to itself are easily proven safe
through descent on the list. The successive calls to continu-
ations are arbitrarily many but finite. Here 𝑘1 and 𝑘2 stand
for different closures of the (𝜆 (n) (k (+ 1 n))) term.
The computation proceeds to an answer since SCP is checked
only between calls to the same closure, directly or indirectly.

It is possible to define a partial order on closures, and this
may be a worthwhile addition to our approach. For example,
Jones and Bohr [20] extend SCT to the untyped 𝜆-calculus
and use a partial order based on closure depth to order func-
tions. In theory, this could be used to dynamically order
closures in our approach, too, however pragmatically, it re-
quires run-time facilities for “opening” closures [38], which
are not typically available.

2.3 Termination and blame
It is useful to assert size-change termination of particular
functions, without necessarily asserting termination of the
whole program. For this reason, we introduce a contract,
terminating/c, in the style of Findler and Felleisen [14].
One key component of contract semantics is blame to ex-
plain the party at fault in contract errors. While our formal
model does not represent blame, our implementation does.
The addition of blame is at once simple and powerful in the
setting of termination contracts. Each use of terminating/c
marks a blame party, and if the function so wrapped fails
to terminate on some call, that location in the program is
blamed. No sophisticated run-time machinery is required.

The addition of blame enables a virtuous cycle in program
development. If a terminating function f calls g, then any
failure to terminate on the part of g will be blamed on f. To
protect themselves from being blamed, the author of f can

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

1 (define comp
2 (terminating/c
3 (𝜆 (e)
4 (match e
5 [`(𝜆 (,x) ,e)
6 (let ([c (comp e)])
7 (𝜆 (𝜌) (𝜆 (z) (c (hash-set 𝜌 x z)))))]
8 [`(,e1 ,e2)
9 (let ([c1 (comp e1)] [c2 (comp e2)])

10 (𝜆 (𝜌) ((c1 𝜌) (c2 𝜌))))]
11 [(? symbol? x) (𝜆 (𝜌) (hash-ref 𝜌 x))]))))
12 (define c1
13 (terminating/c ; Okay
14 (comp '((𝜆 (x) (x x)) (𝜆 (y) y)))))
15 (define c2
16 (terminating/c ; Okay
17 (comp '((𝜆 (x) (x x)) (𝜆 (y) (y y))))))
18 (c1 (hash)) ; Okay
19 (c2 (hash)) ; Error

Figure 2. A checked 𝜆-calculus implementation

in turn impose the same contract on g, leading to richer spec-
ifications and precise errors pinpointing the faulty compo-
nent. Finally, the provision of size-change termination con-
tracts enables a gradual-typing-style integration of total and
partial program components.

2.4 The power of dynamic enforcement
Checking termination of an interpreter for a Turing-complete
language is challenging—after all, the interpreter does not
terminate on all programs. Nevertheless, dynamic size-change
monitoring allows the interpretation of many interesting
programs to finish. In Figure 2, we present a 𝜆-calculus im-
plementation that first compiles the term to a procedure and
then applies this procedure to an environment. The com-
pilation itself terminates by structural recursion, which is
simple to check, but the compilation result is a procedure
whose termination is not obvious. In fact, in this example,
the first test program c1 terminates when run, but c2 loops
infinitely. Dynamic size-change monitoring flexibly allows
the first one to finish, and quickly catches the divergence
in the second one. The ability to check for termination of
specialized programs highlights the advantages of dynamic
termination checking.

Execution of (c1 (hash)) terminates because no func-
tion ever calls itself with a non-decreasing argument. In con-
trast, during the execution of (c2 (hash)), the compilation
result of (𝜆 (y) (y y)) calls itself (indirectly) with a non-
decreasing argument (in this case, identical), hence caught
by the monitoring. As shown in the evaluation section (§5),
our implementation is able to confirm the termination of a
Scheme interpreter executing merge-sort.

[Expressions] 𝑒 ∶∶= o | 𝑏 | (𝜆 (⃗⃗ ⃗⃗𝑥) 𝑒) | 𝑥 | (𝑒 ⃗𝑒)
| (if0 𝑒 𝑒 𝑒)

[Value Literals] 𝑏 ∶∶= 0 | − 1 | 1 | …
[Primitives] o ∶∶= + | cons | car | cdr | …

[Values] 𝑣 ∶∶= o | 𝑏 | (𝑣, 𝑣) | Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)
[Standard Answers] 𝑎 ∶∶= 𝑣 | errorRT

[Answers] 𝑎SC ∶∶= 𝑎 | errorSC
[Environments] 𝜌 = 𝑥 → 𝑣

[Size-change Table] 𝑚 ∈ 𝑣 ⇀ ⃗𝑣 × ⃗𝑔
[Size-change Graph] 𝑔 ∈ 𝒫(ℕ × 𝑟 × ℕ)

[Change] 𝑟 ∶∶= → | → =

SC-Err

𝜌, ⊥ ⊢ 𝑒 ⬇ errorSC

SC-Prim

𝜌, 𝑚 ⊢ o ⬇ o

SC-Base

𝜌, 𝑚 ⊢ 𝑏 ⬇ 𝑏

SC-Lam

𝜌, 𝑚 ⊢ (𝜆 (⃗⃗ ⃗⃗𝑥) 𝑒) ⬇ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)
SC-Var

𝜌, 𝑚 ⊢ 𝑥 ⬇ 𝜌(𝑥)

SC-If-T
𝜌, 𝑚 ⊢ 𝑒 ⬇ 0 𝜌, 𝑚 ⊢ 𝑒1 ⬇ 𝑎SC

𝜌, 𝑚 ⊢ (if0 𝑒 𝑒1 𝑒2) ⬇ 𝑎SC

SC-If-F
𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑣 where 𝑣≠0 𝜌, 𝑚 ⊢ 𝑒2 ⬇ 𝑎SC

𝜌, 𝑚 ⊢ (if0 𝑒 𝑒1 𝑒2) ⬇ 𝑎SC

SC-App-Clo
𝜌, 𝑚 ⊢ 𝑒 ⬇ Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′) 𝜌, 𝑚 ⊢ ⃗⃗⃗ ⃗⃗⃗ ⃗𝑒𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥

𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], upd(𝑚,Clo(⃗⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝑎SC

𝜌, 𝑚 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⬇ 𝑎SC

Figure 3. Syntax and semantics of 𝜆SCT.

3 Dynamic SCT monitoring
This section introduces language 𝜆SCT, which is 𝜆-calculus,
extended with base values and primitive operations, and
with a modified semantics ensuring that all programs ter-
minate. Figure 3 shows 𝜆SCT’s syntax and semantics.

3.1 A terminating semantics
Thedomain of values (𝑣) in 𝜆SCT includes primitives (o), inte-
gers (𝑛), pairs (𝑣1, 𝑣2), and closures (Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)). No prim-
itive in 𝜆SCT is allowed to cause divergence.

We present the semantics of 𝜆SCT in Figure 3. The seman-
tics is defined by relation 𝜌, 𝑚 ∪ {⊥} ⊢ 𝑒 ⬇ 𝑎SC, which ex-
tends the standard semantics by accumulating a size-change
table 𝑚. The size-change table maps each function (𝑣) to the

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

most recent arguments it was applied to, in the current dy-
namic extent, as well as a sequence of size-change graphs
(⃗𝑔) recording ways in which arguments of (𝑣) descend. A
size-change graph (𝑔) is a set of arcs of the form (𝑖 → 𝑗) or
(𝑖 → = 𝑗), indicating that the 𝑖-th argument always strictly
descends (

→

) or never ascends (

→ =) to the 𝑗-th argument.
An evaluation answer (𝑎SC) can be a value, run-time er-

ror (errorRT), or size-change error (errorSC). A run-time er-
ror is one resulting from mis-use of language constructs as
standard in a programming language (e.g. applying a prim-
itive to arguments not in its intended domain, applying a
non-function, or a function of the wrong arity, etc.). A size-
change error is one raised by size-change monitoring upon
detecting a size-change violation. We omit rules that intro-
duce run-time errors and error propagation, as they are en-
tirely standard and not the focus of this paper.

Rule [SC-App-Clo] shows application of a closure. In 𝜆SCT,
all applications are enforced to have the size-change prop-
erty. Before executing the function’s body as in the stan-
dard semantics, we update the size-change table and guard
against a violation to the size-change property. Helper func-
tion upd updates the size-change table with the function’s
latest arguments and size-change graph, potentially return-
ing ⊥ if there is a size-change violation. If upd does not re-
turn a table, the evaluation aborts with an error as in rule
[SC-Err].

3.2 Updating and monitoring size-change graphs
Figure 4 lists helper functions that update and monitor SCT.

Function upd takes the size-change table (𝑚), function (𝑣),
and its latest arguments (⃗𝑣𝑛). It computes a new size-change
graph (𝑔𝑛) for the transitions from the previous arguments
(⃗𝑣𝑛−1) to these new arguments, ensures that the new graph
sequence (𝑔𝑛 ∷ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑔𝑛−1) does not violate the size-change prop-
erty, and then updates the graph in 𝑚. If function 𝑣 has not
been applied before and there is no entry in𝑚, a trivial entry
with the current argument list as well as the empty graph
sequence is stored.

Function graph computes a size-change graph from two
value lists. For each value 𝑣𝑗 at index 𝑗 in the latter list that
is observed to be strictly smaller than some value 𝑣𝑖 at index
𝑖 in the former list, an arc (𝑖 → 𝑗) is included in the graph.
When the values are equal, we include (𝑖 → = 𝑗) instead.

The composition (;) of two size-change graphs (𝑔0 and 𝑔1)
includes an arc (𝑖 → 𝑘) if there is an arc (𝑖 𝑟 𝑗) in 𝑔0 and
(𝑗 𝑟 𝑘) in 𝑔1, with at least one arc being a strict descent. If
𝑖 propagates to 𝑘 only through non-ascendance, the weaker
arc (𝑖 → = 𝑘) is included.

Finally, predicate prog? checks for the lack of violation
to the size-change termination principle: a graph sequence
𝑔𝑛 … 𝑔1 violates the size-change termination principle if there
exists a sub-sequence 𝑔𝑖; … ; 𝑔𝑗 (where 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛) that
is both idempotent and lacking of an strict descending arc
of a parameter to itself.

upd ∶ 𝑚 × 𝑣 × ⃗𝑣 → 𝑚 ∪ {⊥}
upd(𝑚,𝑣, ⃗𝑣𝑛) = 𝑚[𝑣 ↦ (⃗𝑣𝑛, [])], if 𝑣 ∉ 𝑚

upd(𝑚,𝑣, ⃗𝑣𝑛) =
⎧{
⎨{⎩

𝑚[𝑣 ↦ (⃗𝑣𝑛, 𝑔𝑛 ∷ ⃗𝑔𝑛−1)]
if prog?(𝑔𝑛 ∷ ⃗𝑔𝑛−1)

⊥ otherwise
where (⃗𝑣𝑛−1, ⃗𝑔𝑛−1) ≡ 𝑚(𝑣)

and 𝑔𝑛 = graph(⃗𝑣𝑛−1, ⃗𝑣𝑛)

graph ∶ ⃗𝑣 × ⃗𝑣 → 𝑔
graph(⃗𝑣, ⃗𝑣′) = {(𝑖 → 𝑗) | 𝑣𝑖 ∈ ⃗𝑣, 𝑣𝑗 ∈ ⃗𝑣′, 𝑣𝑗 ≺𝑣𝑖}

∪ {(𝑖 → = 𝑗) | 𝑣𝑖 ∈ ⃗𝑣, 𝑣𝑗 ∈ ⃗𝑣′, 𝑣𝑗 =𝑣𝑖}

(;) ∶ 𝑔 × 𝑔 → 𝑔
𝑔0 ; 𝑔1 = {(𝑖 → 𝑘) | (𝑖 → 𝑗)∈𝑔0, (𝑗 𝑟 𝑘)∈𝑔1}

∪ {(𝑖 → 𝑘) | (𝑖 𝑟 𝑗)∈𝑔0, (𝑗 → 𝑘)∈𝑔1)}
∪ {(𝑖 → = 𝑘) | (𝑖 → = 𝑗)∈𝑔0, (𝑗 → = 𝑘)∈𝑔1,

∀𝑗.(𝑖𝑟0𝑗)∈𝑔0, (𝑗𝑟1𝑘)∈𝑔1∶ 𝑟0=𝑟1=

→ =}

prog? ∶ ⃗𝑔 → 𝔹
prog?(𝑔𝑛…𝑔1) = ⋀1≤𝑖≤𝑗≤𝑛 desc?(𝑔𝑖; … ; 𝑔𝑗)

desc? ∶ 𝑔 → 𝔹
desc?(𝑔) = (𝑔 = 𝑔; 𝑔) ⟹ ∃𝑖.(𝑖 → 𝑖)∈𝑔

Figure 4. Updating and monitoring size-change

≺ , ⪯ ⊆ 𝑣 × 𝑣
𝑛1 ≺ 𝑛2 if |𝑛1| < |𝑛2|
𝑣 ≺ (𝑣′, _) if 𝑣 ⪯ 𝑣′

𝑣 ≺ (_, 𝑣′) if 𝑣 ⪯ 𝑣′

𝑣 ⪯ 𝑣′ if 𝑣 ≺ 𝑣′ or 𝑣 = 𝑣′

Figure 5. Example well-founded partial order ⪯

3.3 Well-founded partial order
Figure 5 shows an example of a well-founded partial order
(⪯) on values in 𝜆SCT. It is defined on integers by compar-
ing absolute values, and a field of a data-structure is con-
sidered smaller than any data-structures that contain it (i.e.,
the tail of any list is considered less than than the original
list). Although simple, this relation is sufficient to check for
termination in most programs that descend on integers and
data-structures. If a program descends following a different
order, the user of 𝜆SCT can replace the default order with an
appropriate one.

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

3.4 Totality of evaluation
We may note that all programs in 𝜆SCT terminate, either by
adhering to the size-change principle, or by violating it and
aborting with an error.

Theorem 3.1 (Termination of 𝜆SCT). For all 𝑒, 𝜌, 𝑚, where
fv(𝑒) ⊆ dom(𝜌), 𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑎SC for some 𝑎SC.

3.5 Soundness and completeness
The size-change property is a safe over-approximation to en-
sure termination. The correctness of monitoring this prop-
erty can therefore be understood as any strategy that satis-
fies the following properties:

• soundness: if a program evaluates to a value under
the modified semantics, running that program with-
out termination checking gives the same result.

• SCT-completeness: if a program size-change terminates
to a value under the standard semantics, running that
program under the modified semantics with termina-
tion checking gives the same result.

In addition, because all programs terminate under the mod-
ified semantics when termination checking is enabled, all
diverging programs are caught as error-raising programs.

We now formally establish the correctness of 𝜆SCT’s size-
change monitoring semantics with respect to its standard
semantics.1

Theorem3.2 (Soundness of size-changemonitoring in𝜆SCT).
If 𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑎, then 𝜌 ⊢ 𝑒 ⇓ 𝑎.
Proof. By induction on the derivation of 𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑎. □

Corollary 3.3 (Size-changemonitoring catches divergence).
If program 𝑒 diverges under the standard semantics, then {}, {} ⊢
𝑒 ⬇ errorSC.

Proof. From Theorem 3.1, 𝑒 either evaluates to a standard
answer or errorSC under size-change monitoring. By con-
trapositive of Theorem 3.2, 𝑒 evaluates to errorSC if 𝑒 di-
verges. □

Asemantics that evaluates to call sequences Before stat-
ing and proving completeness of size-change monitoring,
we define a mostly-standard semantics that also evaluates
to set of size-change tables along with the answer, but per-
forms no guarding against any size-change violation. It is
in lock-step with the standard semantics, and resembles the
terminating semantics in accumulating the size-change ta-
ble. Figure 6 shows this semantics.

Lemma 3.4 (Completeness of call-sequence semantics). If
𝜌 ⊢ 𝑒 ⇓ 𝑣 then 𝜌, {} ⊢ 𝑒 ↓↓ 𝑣, {𝑚 …} for some {𝑚 …}.
Proof. By induction on the derivation of 𝜌 ⊢ 𝑒 ⇓ 𝑣. □

1𝜆SCT’s standard dynamic semantics is unsurprising and can be found in
the appendix.

CC-Base

𝜌, 𝑚 ⊢ 𝑏 ↓↓ 𝑏, {𝑚}

CC-App
𝜌, 𝑚 ⊢ 𝑒 ↓↓ Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), {𝑚′ …}

𝜌, 𝑚 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ↓↓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{𝑚𝑥 …}
𝜌′ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗[𝑥↦𝑣𝑥], ext(𝑚,Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ↓↓ 𝑎, {𝑚″…}

𝜌, 𝑚 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ↓↓ 𝑎, {𝑚′ …} ∪ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗{𝑚𝑥 …} ∪ {𝑚″…}

ext ∶ 𝑚 × 𝑣 × ⃗𝑣 → 𝑚
ext(𝑚, 𝑣, ⃗𝑣𝑛) = 𝑚[𝑣 ↦ (⃗𝑣𝑛, [])], if 𝑣 ∉ 𝑚
ext(𝑚, 𝑣, ⃗𝑣𝑛) = 𝑚[𝑣 ↦ (⃗𝑣𝑛, 𝑔𝑛 ∷ ⃗𝑔𝑛−1)]

where (⃗𝑣𝑛−1, ⃗𝑔𝑛−1) ≡ 𝑚(𝑣)
and 𝑔𝑛 = 𝑔𝑟𝑎𝑝ℎ(⃗𝑣𝑛−1, ⃗𝑣𝑛)

Figure 6. Call-sequence Semantics of 𝜆SCT.

Lemma 3.5 (Completeness of size-change monitoring with
respect to call-sequence semantics). If 𝜌, 𝑚 ⊢ 𝑒 ⬇ errorSC

and 𝜌, 𝑚 ⊢ 𝑒 ↓↓ 𝑣, {𝑚′ …} then there exists 𝑚𝑖 in {𝑚′ …}
and 𝑣 such that ¬prog?(𝑔) where (⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥, 𝑔) = 𝑚𝑖(𝑣).
Proof. By induction on the derivation of 𝜌, 𝑚 ⊢ 𝑒 ⬇ errorSC.

□

Theorem 3.6 (Completeness of size-change monitoring in
𝜆SCT). If 𝜌, {} ⊢ 𝑒 ⬇ errorSC and 𝜌 ⊢ 𝑒 ⇓ 𝑣 then 𝜌, {} ⊢ 𝑒 ↓↓
𝑣, {𝑚 …} such that there exists 𝑚𝑖 in {𝑚 …} and 𝑣 such that
¬prog?(𝑔) where (⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥, 𝑔) = 𝑚𝑖(𝑣).
Proof. Follows from Lemma 3.4 and Lemma 3.5. □

3.6 Termination checking as a contract
It can be useful to enforce termination checking selectively
on parts of the code rather than on the entire program. We
present a simple extension to 𝜆SCT called 𝜆CSCT, which adds
a construct (term/c 𝑒) that guards (𝑒) with a contract ensur-
ing it behaves as a size-change-terminating function. Other
than executing the bodies of contract-guarded functions,𝜆CSCT’s
semantics is similar to that of the standard semantics. Fig-
ure 7 shows the key extension to 𝜆CSCT’s syntax and seman-
tics.

Rule [Wrap-Lam] shows the introduction of a termination-
checked function. Only closures are capable of violating SCT
in 𝜆SCT, so we only wrap closures and return other values
as-is.

4 Static SCT Verification
Given termination formulated as a dynamically checkable
property, we can systematically turn these dynamic checks
into static verification by building on previouswork in higher-
order symbolic execution [29, 40, 44].

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

[Expressions] 𝑒 ∶∶= … | (term/c 𝑒)
[Values] 𝑣 ∶∶= … | term/c(Clo(⃗⃗⃗𝑥, 𝑒, 𝜌))

Wrap-Lam
𝜌 ⊢ 𝑒 ⇓ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)

𝜌 ⊢ (term/c 𝑒) ⇓ term/c(Clo(⃗⃗⃗𝑥, 𝑒, 𝜌))

App-Term
𝜌 ⊢ 𝑒 ⇓ term/c(Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′)) 𝜌 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥

𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], upd({},Clo(⃗⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝑎SC

𝜌 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⇓ 𝑎SC

Figure 7. Syntax and semantics of 𝜆CSCT.

Symbolic execution extends the standard semantics with
symbolic values that can stand for any values (including
higher-order values), andmaintains a path-condition, which
is a formula about facts that must hold for symbolic values
on each path. Because termination checks ultimately decom-
pose into “less-than” checks, which check for a definite de-
scent of values along a well-founded partial order, there is
no special challenge in using symbolic execution for size-
change termination checking. Symbolic execution can read-
ily leverage SMT solvers for precise reasoning about path-
conditions, proving termination that depends on sophisti-
cated path-sensitivity.

Although symbolic execution has traditionally been used
to find bugs [5, 21, 25, 33, 34] as opposed to verifying pro-
grams as correct, we can apply a well studied technique for
abstracting the operational semantics through finitizing the
program’s dynamic components [12, 43] and obtain a verifi-
cation that particular errors cannot occur at run-time.

4.1 Extended semantics
Figure 8 shows extension to 𝜆SCT, called 𝜆SSCT that allows
symbolic execution, as well as the key extension to the se-
mantics that enables symbolic execution.

We extend the set of values (𝑣) with symbolic values (𝑠),
which can stand for any value. The semantics of 𝜆SSCT must
then account for symbolic values, which means some ex-
pressions can nondeterministically evaluate to multiple an-
swers to soundly over-approximate all the cases resulting
from possible instantiations of symbolic values. Symbolic
executionmaintains a path-condition (𝜙) to characterize each
path, which is a set of symbolic values assumed to have eval-
uated to true (interpreted as a conjunction).

With symbolic values, established orders between values
aremore conservative, and the size-change graphs computed
between symbolic value lists as in Figure 4 have, in general,
nomore arcs than in the concrete case as each arc now repre-
sents a must-descent or must-non-ascent relationship over
all possible concrete paths. A sufficiently precise symbolic

[Values] 𝑣 ∶∶= … | 𝑠
[Symbolic Values] 𝑠 ∶∶= 𝑥 | 𝑏 | (o ⃗𝑠)
[Path Conditions] 𝜙 = ⃗𝑠

Sym-If-T
𝜌, 𝜙 ⊢ 𝑒 ⇓𝑠 𝑠, 𝜙′ 𝜌, (= 𝑠 0)∷𝜙′ ⊢ 𝑒1 ⇓𝑠 𝑎SC, 𝜙″

𝜌, 𝜙 ⊢ (if0 𝑒 𝑒1 𝑒2) ⇓𝑠 𝑎SC, 𝜙″

Sym-If-F
𝜌, 𝜙 ⊢ 𝑒 ⇓𝑠 𝑠, 𝜙′ 𝜌, (≠ 𝑠 0)∷𝜙′ ⊢ 𝑒2 ⇓𝑠 𝑎SC, 𝜙″

𝜌, 𝜙 ⊢ (if0 𝑒 𝑒1 𝑒2) ⇓𝑠 𝑎SC, 𝜙″

Figure 8. Semantics of symbolic 𝜆SSCT.

execution, coupled with effective SMT solving, can main-
tain a graph with enough arcs to prove that functions will
always maintain their size-change properties.

Proposition 4.1 (Soundness of static verification). If {} ⊢
𝑒 ⇓ 𝑣 and {} ⊢ 𝑒1 ⇓ 𝑣1 and (𝑒 𝑒1) diverges, then {}, {} ⊢
((term/c 𝑒) 𝑠) ⇓𝑠 errorSC, 𝜙′ (𝑠 is a fresh symbolic value).

Proof. Follows from soundness of dynamic checking of size-
change termination (Theorem 3.2) and soundness of higher-
order symbolic execution [28]. □

4.2 Ackermann revisited
Nowconsider again the example ack, a termination-checked
Ackermann function shown in Section 2.

Suppose ack’s precondition is that its arguments are nat-
ural numbers. To verify ack, we apply the function on sym-
bolic natural numbers m and n that have passed ack’s pre-
condition with the path-condition {(≥ m 0), (≥ n 0)}.
With these symbolic inputs, execution non-deterministically
takes all three branches, and accumulates in the path-condition
assumptions about the values: in the first branch, m is 0; in
the second branch, m is positive and n is 0; in the last branch,
both m and n are positive.

The first branch simply returns and does not trigger any
size-change monitoring. The second branch reaches a recur-
sive call with the path-condition {(≥ m 0),(≠ m 0),(=
n 0)}. The recursive call proceeds, checking for all relation-
ships that can be established between the old and new argu-
ments as in Figure 4. In this case, with the path-condition
that m is positive, symbolic execution easily proves that (-
m 1) is less than m according to the partial order defined in
Figure 5. No other definite order can be established between
the new arguments (- m 1), 1 and the old ones m, n. This
gives the new size-change graph of {(𝑚 → 𝑚)} 2. We ex-
tend ack’s set of size-change graphs with this new graph.
2We use variable names instead of indices for graph nodes in this section

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

(ack m n)
where (≥ m 0)∧(≥ n 0){(m

→

m)} {(m

→=m),(n

→

n)}

Figure 9.Abstract call and size-change graphs for ack.

In addition, symbolic execution can prove the new call to
ack receives the same path-condition as the previous call:
both new arguments (- m 1) and 1 are natural numbers.

The third branch reaches the inner recursive call to ack
before reaching the outer one. The path-condition, again, is
sufficient for establish the descent from n to (- n 1) and
maintenance of m, yielding the new graph {(𝑚 → = 𝑚), (𝑛 →
𝑛)}. When execution reaches the outer recursive call to ack,
the descent from m to (- m 1) can be straightforwardly es-
tablished. In each case, symbolic execution can also prove
that the new arguments are natural numbers.

Figure 9 summarizes all the ways ack can call itself re-
cursively. Because no composition of size-change graphs
drawn from this set can yield a graph that violates the size-
change principle (i.e. one that is both idempotent and lack-
ing of a self-descent arc), ack never violates size-change ter-
mination.

5 Implementation and evaluation
We implement the semantics presented in Section 3 as a li-
brary in the Racket programming language through instru-
mentation of the application form.

An application form (f x ...) in Racket is syntactic sugar
for (#%app f x ...), and libraries can modify what an ap-
plication means by redefining the #%app form. For our pur-
pose, we redefine the application form to implement the
rules [SC-App-Clo] in Figure 3 [App-Term] in Figure 7. If
size-change termination is being enforced, the #%app form
looks up the size-change table to guard against violations.

There are two possible techniques for maintaining the
size-change table. The first technique is wrapping each ap-
plication with code that imperatively updates and restores
the table.The second technique is through continuation-marks [7].
The former can be implemented inmost languages, and gives
relatively good performance, but breaks tail calls. The latter
is simple to implement in languages with support for contin-
uation marks, and preserves tail calls, but shows high over-
heads in tight loops.

Our semantics implicitly assumes that closures can be
compared structurally for equality, which is not possible in

practice. We instead hash the closure and consider all clo-
sures with the same hash code to be equivalent. This pre-
serves soundness as the table 𝑚 cannot grow infinitely, but
could produce false positive error reports. Note that this in-
completeness does not affect the static analysis, which is
derived from the semantics itself. Future work includes run-
time support for more precise comparison between closures.

In addition, we expose a parameter specifying the custom
partial order for use in termination checks, with a default
implementation as described in Figure 5.

Although a naive implementation would be prohibitively
expensive, with a few optimizations, the overhead can be
brought down to acceptable for the goal of debugging

Reducing monitoring frequency The construction and
checking of size-change graphs is expensive, but need not
be performed each time a function calls itself recursively.
Because strict progress down any well-founded partial or-
der can only be maintained a finite number of times, any
non-SCT program will violate the size-change principle re-
gardless of the monitoring frequency. We therefore use ex-
ponential backoff to reduce the frequency of extending and
monitoring each function’s size-change. This significantly
reduces the monitoring overhead, although risks keeping
data from earlier iterations live for longer than would be
otherwise.

Avoiding instrumentation for known functions Inmany
cases, functions that are known to terminate need no instru-
mentation. For example, we maintain a white-list of primi-
tives known to terminate.

Monitoring size-change graphs only for loop entries
We identify “loop entries” to monitor instead of construct-
ing and monitoring a size-change graph for each function.
For example, suppose even? and odd? are mutual recursive
functions, where the top-level context calls even?, then only
even? is a loop-entry and has a size-change graph constructed
and monitored.

5.1 Evaluation
We evaluate the effectiveness and efficiency of size-change
monitoring. Effective monitoring should allow all or most
terminating programs to finish execution, and quickly catch
diverging programs. Efficient monitoring should introduce
little overhead compared to execution without monitoring.

5.1.1 Effectiveness and efficiency on terminating
programs

Table 1 shows terminating programs we use to evaluate the
dynamic checks and static analysis of terminating contracts.
The programs were collected from previous work on termi-
nation checking: size-change termination for first-order pro-
grams (sct) [24]; size-change termination for higher-order
programs (ho-sct) [36]; LiquidHaskell (lh) [46]; Isabelle [23];

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

Program Dyn. Static LH Isabelle ACL2
sct-1 (rev) 3 3 3R 3 3
sct-2 3 3 7 3R 3
sct-3 (ack) 3 3 3A 3 3
sct-4 3 3 7 3 3
sct-5 3 3 7 3 3
sct-6 3 3 7 3 3

ho-sc-ack 3 7 -T -T -H
ho-sct-fg 3 3 3 3 -H
ho-sct-fold 3 3 3A 3 -H
isabelle-perm 3 3 7 3 3
isabelle-f 3 7 7 3 3
isabelle-foo 3 7 7 3 3
isabelle-bar 3 7 7 3 3
isabelle-poly 3 7 7 7 7

acl2-fig-2 3O 7 7 7 7
acl2-fig-6 3 3 7 7 7
acl2-fig-7 3 7 7 7 3

lh-gcd 3 7 3 3 3
lh-map 3 3 3 3 -H
lh-merge 3 3 3A 3 3
lh-range 3O 7 3A 7 3
lh-tfact 3 3 3 3 3

dderiv 3 3 A: With annotations
deriv 3 7 O: Custom partial order
destruct 3 7 H: No H.O. functions
div 3 3 T: Not typable
nfa 3 3 R: Rewritten to use
scheme 3 7 pattern matching

Table 1. Evaluation on terminating programs

ACL2 [26]; and a collection of larger Scheme benchmarks
that terminate by the size-change principle.

The table shows the precision of dynamic checking and
static analysis, as well as comparison with other systems
where possible. Most programs are small and under 15 lines.
The largest program is schemewith 1,100 lines, which imple-
ments an interpreter for R5RS Scheme that interprets the
mergesort algorithm on a list of strings. We did our best
efforts to translate programs from one system to another.
For example, sct-2 is originally an untyped program com-
posing a heterogenous list which cannot be typed in Liquid
Haskell and Isabelle. We translated sct-2 to work with an
equivalent custom tree data-type.

Several cases where the programs need modifications to
be successfully verified by the systems are annotated in the
table. For example, sct-1 and sct-2 originally use condi-
tionals, and can only be verified when converted to use pat-
tern-matching. Some other programs are only verified suc-
cessfully with annotational help on termination, such as ex-
plicit lexical ordering (e.g. lh-merge), or a custom partial-
order (e.g. acl2-fig-2). Some programs cannot be expressed

in all systems. For example, ACL2 cannot check higher-order
programs, and the type systems in Liquid Haskell and Is-
abelle do not support the Y-combinator that has self-applica-
tions (e.g. ho-sct-ack). To our surprise, current versions of
the tools cannot check some of their own benchmarks de-
spite our best efforts to reproduce (e.g. isabelle-poly for
Isabelle; acl2-fig-2 and acl2-fig-6 for ACL2). Overall,
our system works well for a wide range of programs and id-
ioms, including higher-order untyped programs with mod-
erate side effects (such as in the Scheme benchmarks).

Figure 10 shows the slowdownwhen using dynamic checks
for select programs: factorial, sum, and merge-sort, as
well as their interpreted version inside a Scheme interpreter.
These programs demonstrate different patterns in recursive
programs that incur different levels of overhead from size-
change monitoring. For programs that do heavy computa-
tion such as factorial multiplying large integers, or the
Scheme interpreter doing significant work, overhead is neg-
ligible. For programs that consist mainly of tight loop such
as sum or repeatedly loop on large data-structures such as
merge-sort, overhead is much more significant. That the
overhead stays fixedwhen the input grows (for continuation-
mark implementation on tight loops, approximately two or-
ders of magnitude) suggests that further optimization effort
to trim down the constant factor can make monitoring suit-
able for realistic uses.

5.1.2 Effectiveness on diverging programs
Wealso evaluate dynamicmonitoring on diverging programs
on how quickly the monitoring system catches divergence.
These programs include modified versions of correct pro-
grams, as well as one originally incorrect program (e.g., nfa)
that our static analysis discovered. Because violation of the
size-change principle tend to show up in early iterations,
our dynamic contracts catch the error very early, resulting
in immeasurable delay from the start of the program to the
point where divergence is detected.

The nfa program is particularly interesting, because it is a
Scheme benchmark that has been around for decades. It is a
program that implements a non-deterministic finite automa-
ton of the regular expression ((a|c)*bcd)|(a*bc), then
run the automaton on the string a133bc. The following func-
tion implements one state recoginizing the sub-expression
(a|c)* with the bug underlined:

1 (define (state1 input)
2 (and (not (null? input))
3 (or (and (char=? (car input) #\a)
4 (state1 (cdr input)))
5 (and (char=? (car input) #\c)
6 (state1 input))
7 (state2 input))))

Thebugwas never discovered, because the particular bench-
mark input did not trigger the divergence, and most static

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

100

102

104

Ti
m
e
(m

s)

Factorial

unchecked

continuation-mark

imperative

100

102

104

Ti
m
e
(m

s)

Sum

100

101

102

103

Ti
m
e
(m

s)

Merge-sort

0.2 0.4 0.6 0.8 1

⋅105

100

102

104

Input size

Ti
m
e
(m

s)

Interpreted Factorial

unchecked

continuation-mark

imperative

0.2 0.4 0.6 0.8 1

⋅107

101

103

105

Input size

Ti
m
e
(m

s)

Interpreted Sum

0.2 0.4 0.6 0.8 1

⋅105

100

102

104

Input size

Ti
m
e
(m

s)

Interpreted Merge-sort

Figure 10. Slow-down of monitoring factorial, sum, and merge-sort, and the Scheme interpreter running them

analysis only check for partial correctness. Our static anal-
ysis was the first to discover this error after many years.

6 Related work
Our work builds on the size-change termination (SCT) ap-
proach [24] and on approaches to static contract verifica-
tion via symbolic execution [28, 29]. We relate our contribu-
tions to dynamic and static termination checking, and then
to static contract verification.

6.1 Dynamic termination checking
To the best of our knowledge, no existing work enforces ter-
mination dynamically using behavioral contracts. Related
work has investigated dynamic loop detection, nontermina-
tion auditing, and more restricted declarative languages.

The auditing tool Looper [4] dynamicallymonitors a Java
program in order to prove nontermination using concolic
(concrete and symbolic) execution. Along the potentially non-
terminating loop, it derives a path condition paired with a
memory map (an encoding of heap values at the end of a
loop iteration as a function of their initial values), and uses
an SMT solver to check if the initial path condition (after
zero iterations) implies itself under the loop iteration’smem-
ory map. If this fails, Looper will observe another iteration
and record a new path condition and memory map. When
each path condition implies the next (under that iteration’s
memory map), in a cyclic chain that terminates with the
original path condition, the program will not terminate.

Unlike our terminating/c contract, Looper does notmon-
itor code for nontermination during normal execution; in-
stead, it is deployed by an auditor to determine whether an
apparent loop is an actual one.While Looper can provide an

affirmative proof that code will not terminate, our approach
will signal that a function does not obey SCT, a more con-
servative notion of termination. This means our approach
is susceptible to false positives and may blame functions
which do always terminate, but will never permit nonter-
mination. Looper, on the other hand, is susceptible to false
negatives and may fail to prove an execution to be defini-
tively nonterminating. Looper’s soundness is also contin-
gent on all changes to memory being visible and accounted
for in the memory map, which is not always the case in C
due to external state and shared-memory parallelism.

Jolt [6] (and successor Bolt [22]) is an infinite-loop de-
tection and recovery tool for C programs. It instruments C
code to dynamically monitor for loops that are in the ex-
act same state at two consecutive iterations. Compared with
Looper, this is an especially conservative detection for non-
termination, however Jolt also has a facility for skipping
the program counter past the end of the loop to recover from
nontermination and show that this simple technique is effec-
tive in many cases (sometimes depending on inputs).

There are also dynamic termination schemes for more re-
stricted languages. For example, dynamic checking for ac-
tive database rules [3], or queries in general logic programs
[9, 37]. Shen et al. [37] exploits features unqiue to SLDNF-
trees to identify loop goals with a provably finite term-size.
Codish and Taboch [9] provides a declarative fixed-point se-
mantics that captures termination properties (for an inter-
pretation of Prolog) with the explicit goal of facilitating the
extraction of a static analysis using abstract interpretation.

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

6.2 Static termination checking
A variety of approaches have been used for static verifica-
tion of (non-)termination. None of these systems combine
dynamic and static verification in a single system, or allow
terminating and nonterminating components to be composed.
We begin with the systems we compare with in §5.1.

Jones and Bohr [20] extend the SCT approach to higher-
order languages—specifically, the untyped𝜆-calculus. As the
only values in this language are functions, they select the
“height” of a closure as its size. Sereni and Jones [36] then ex-
tended this approach to handle user-defined datatypes and
general recursion. This work was not empirically evaluated
in the context of a real programming system [35], but es-
tablishes techniques we build on. SCT has been extended
to monotonicity constraints, which have been shown to be
more general than traditional SCT [8]; these could be for-
mulated as a dynamic contract in future work.

Manolios and Vroon [26] develops a static analysis for au-
tomating termination proofs in the context of the full ACL2
system—a functional language and first-order logic for theo-
rem proving. All programs admitted by ACL2must be termi-
nating, as nontermination could render it inconsistent, how-
ever manual termination proofs are complex and require
deep expertise. The paper’s approach uses precise calling-
context graphs that refine static control flow with path fea-
sibility based on accumulating governors (sets of branch
points governing control flow for a subexpression). Strongly
connected components are then further refined using a calling-
context measure in order to discover a well-founded order
over which parameters descend. A major innovation on tra-
ditional SCT approaches is the refinement of feasible paths
using governors. Our approach analagously tracks path con-
ditions for static verification.Their methodwas evaluated to
successfully prove > 98% of the more than 10k functions
of the ACL2 regression suite terminating. Krauss [23] then
extends the approach to Isabelle/HOL and certifies the ter-
mination proofs with LCF-style theorem proving.

LiqidHaskell uses termination proving to ensure pre-
cision and soundness for its refinement type system in the
presence of lazy evaluation [45]. Subtle unsoundness can
result using refinement types in conjunction with call-by-
name evaluation and the direct approach to fixing this un-
soundness, by expressing possible nontermination as a type
refinement, leads to substantial imprecision. LiqidHaskell
bridges this gap by encoding size-change invariants, over
user-specified well-founded metrics, directly into the exist-
ing type system (as further type refinements). This permits
proofs over programs to circularly depend on termination
proofs during SMT solving. Broadly this same approach is
taken to directly encode termination proofs, via size-change
refinements, with dependent types in DependentML [48].
LiqidHaskell has a scalable implementation, used to ver-
ify correctness and termination properties over a corpus of

real-world Haskell libraries (≥ 10𝑘 LOC). TEA is also a ter-
mination analysis for Haskell, based on techniques of path
analysis and abstract reduction [30].

TNT is a concolic executor for statically enumerating non-
terminating lassos in C programs—paths that fold back on
themselves, forming a nonterminating loop [18]. Unlike dy-
namic approaches such as ours, or that of Looper, TNT is
not statically precise enough to handle cases that rely on
symbolic shape information such as cyclic lists.

Velroyen and Rümmer [47] use a modal logic allowing
predicates to be written that are qualified by a program ex-
pression they pertain to.Qualified formulae are trivially ren-
dered true by a diverging program, so a manifest contra-
diction (i.e., false) being interpreted as true constitutes a
proof of nontermination for the qualifying expression. The
approach then uses a refinement process to identify the spe-
cific conditions on data that will lead to proving this con-
tradiction. This system was only evaluated on small expres-
sions (≤25 lines) in a language of pure built-in expressions,
assignments, conditionals, and while loops.

AProVE is a system for automating termination (and non-
termination) proofs of term-rewriting systems (TRSs) Giesl
et al. [15, 16] built using the dependency pair framework
[2, 17]. In practice, however, AProVE cannot prove termi-
nation of a function that takes integers 𝑥 and 𝑦 and recurs
until 𝑥 exceeds 𝑦, so it hasn’t been successfully scaled to
encodings of realistic functional languages [26]. The depen-
dency pair framework is contrasted and synthesized with
SCT by Thiemann and Giesl [39].

Numerous techniques have been proposed and evaluated
for verifying termination in languages such as C and Java,
where higher-order programming is uncommon. Termina-
tor [10, 11, 31] and transition invariants [19, 32, 41] as well
as others [1] have seen extensive development over the past
decade, but differ substantially in methods, goals, and lan-
guage from our system.

6.3 Soft contract verification
Our static termination checking relies on the ability to go
from an operational semantics with dynamic enforcement
to a sound static analyzer—a capability we take from a series
of results on static contract checking by Nguyễn et al. [28,
29].This work showed that sound higher-order symbolic ex-
ecution could be leveraged to provide contract-based soft
verification and counter-example generation for rich languages
including user-defined data structures and contracts as well
as higher-order functions and state. We re-use this work by
retargeting it to contracts that enforce size-change termina-
tion, but otherwise retain the central ideas; it is a goal of our
work that it composes with existing contract systems.

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

7 Conclusion
Termination is a fundamental program correctness property,
but uncheckable even at runtime. To avoid this limitation,
we adapt the size-change principle from static termination
analysis to perform dynamic checking of termination, ex-
ploiting the insight that every infinite execution must have
a call that fails to follow the size change principle.This leads
to the first run-timemechanism for enforcing termination in
a general-purpose programming system. As it is formulated
as a behavioral contract, this also makes it the first contract
for total correctness. By checking termination as a contract,
we can enforce termination in settings where static check-
ing is fundamentally impossible, as in an interpreter.

Further, we compose our dynamic checking strategy with
priorwork showing how to statically verify compliancewith
contracts in higher-order languages to produce a novel static
checker for program termination—without any termination-
specific work. We compare our static checker against three
state-of-the-art custom tools on their own benchmarks, and
find that ours is able to statically verify programs that ex-
ceed the capacities of each of the existing tools.

Sound dynamic enforcement of liveness properties opens
up new possibilities for program correctness, analysis, and
specification—in this paper we have taken only the first step.

Acknowledgments
We are grateful to Amir Ben-Amram, Michael W. Hicks, and
Éric Tanter for comments on early drafts of this work. This
work is supported by part by the National Science Founda-
tion award #1846350.

References
[1] Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim, Germán

Puebla, and Damiano Zanardini. 2008. Termination analysis of Java
bytecode. In International Conference on Formal Methods for Open
Object-Based Distributed Systems. Springer, 2–18.

[2] Thomas Arts and Jürgen Giesl. 2000. Termination of term rewriting
using dependency pairs. Theoretical Computer Science 236, 1-2 (2000),
133–178.

[3] James Bailey, Alexandra Poulovassilis, and Peter Newson. 2000. A Dy-
namic Approach to Termination Analysis for Active Database Rules.
In Computational Logic — CL 2000, John Lloyd, Veronica Dahl, Ul-
rich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi,
Luís Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 1106–1120.

[4] Jacob Burnim, Nicholas Jalbert, Christos Stergiou, and Koushik Sen.
2009. Looper: Lightweight detection of infinite loops at runtime. In
Proceedings of the 2009 IEEE/ACM International Conference on Auto-
mated Software Engineering. IEEE Computer Society, 161–169.

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE:
Unassisted and Automatic Generation of High-coverage Tests for
Complex Systems Programs. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation. USENIX As-
sociation.

[6] Michael Carbin, Sasa Misailovic, Michael Kling, and Martin C Rinard.
2011. Detecting and escaping infinite loops with Jolt. In European

Conference on Object-Oriented Programming. Springer, 609–633.
[7] John Clements andMatthias Felleisen. 2004. A Tail-recursiveMachine

with Stack Inspection. ACM Trans. Program. Lang. Syst. 26, 6 (Nov.
2004).

[8] Michael Codish, Vitaly Lagoon, and Peter J. Stuckey. 2005. Testing for
Termination with Monotonicity Constraints. In Logic Programming,
Maurizio Gabbrielli and Gopal Gupta (Eds.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 326–340.

[9] Michael Codish and Cohavit Taboch. 1997. A Semantic Basis for Ter-
mination Analysis of Logic Programs and Its Realization Using Sym-
bolic Norm Constraints. In Proceedings of the 6th International Joint
Conference on Algebraic and Logic Programming (ALP ’97-HOA ’97).
Springer-Verlag, London, UK, UK, 31–45.

[10] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Ter-
mination proofs for systems code. In ACM SIGPLAN Notices, Vol. 41.
ACM, 415–426.

[11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. TER-
MINATOR: beyond safety. In International Conference on Computer
Aided Verification. Springer, 415–418.

[12] David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn.
2017. Abstracting Definitional Interpreters (Functional Pearl). Proc.
ACM Program. Lang. 1, ICFP, Article 12 (Aug. 2017), 25 pages. DOI:
http://dx.doi.org/10.1145/3110256

[13] Martin Davis. 1958. Computability and Unsolvability. McGraw-Hill.
[14] Robert B. Findler and Matthias Felleisen. 2002. Contracts for higher-

order functions. In ICFP ’02: Proceedings of the seventh ACM SIGPLAN
International Conference on Functional Programming. ACM.

[15] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. 2006.
AProVE 1.2: Automatic termination proofs in the dependency pair
framework. In International Joint Conference on Automated Reasoning.
Springer, 281–286.

[16] Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, and René
Thiemann. 2006. Automated Termination Analysis for Haskell: From
Term Rewriting to Programming Languages. In Term Rewriting and
Applications, Frank Pfenning (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 297–312.

[17] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. 2005. The
dependency pair framework: Combining techniques for automated
termination proofs. In International Conference on Logic for Program-
ming Artificial Intelligence and Reasoning. Springer, 301–331.

[18] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey
Rybalchenko, and Ru-Gang Xu. 2008. Proving Non-termination. In
Proceedings of the ACM Symposium on Principles of Programming Lan-
guages (POPL ’08). ACM, 147–158.

[19] Matthias Heizmann, Neil D Jones, and Andreas Podelski. 2010. Size-
change termination and transition invariants. In International Static
Analysis Symposium. Springer, 22–50.

[20] Neil D Jones and Nina Bohr. 2004. Termination analysis of the un-
typed 𝜆-calculus. In International Conference on Rewriting Techniques
and Applications. Springer, 1–23.

[21] James C. King. 1976. Symbolic Execution and Program Testing. Com-
mun. ACM 19, 7 (1976).

[22] Michael Kling, Sasa Misailovic, Michael Carbin, and Martin Rinard.
2012. Bolt: on-demand infinite loop escape in unmodified binaries. In
ACM SIGPLAN Notices, Vol. 47. ACM, 431–450.

[23] Alexander Krauss. 2007. Certified size-change termination. In Inter-
national Conference on Automated Deduction. Springer, 460–475.

[24] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The
Size-change Principle for Program Termination. In Proceedings of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’01). ACM, New York, NY, USA, 81–92.

http://dx.doi.org/10.1145/3110256

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

[25] R. Majumdar and K. Sen. 2007. Hybrid Concolic Testing, In Software
Engineering, 2007. ICSE 2007. 29th International Conference on. Soft-
ware Engineering, 2007. ICSE 2007. 29th International Conference on
(2007).

[26] Panagiotis Manolios and Daron Vroon. 2006. Termination analysis
with calling context graphs. In International Conference on Computer
Aided Verification. Springer, 401–414.

[27] Jan Midtgaard. 2012. Control-flow Analysis of Functional Programs.
ACM Comput. Surv. 44, 3 (June 2012).

[28] Phúc C Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David
Van Horn. 2018. Soft contract verification for higher-order stateful
programs. Proceedings of the ACM Symposium on Principles of Pro-
gramming Languages (POPL) 2, POPL (2018), 51.

[29] Phúc C Nguyễn, Sam Tobin-Hochstadt, and David Van Horn. 2014.
Soft Contract Verification. In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming. ACM.

[30] Sven Eric Panitz and Manfred Schmidt-Schauß. 1997. TEA: Automat-
ically proving termination of programs in a non-strict higher-order
functional language. In Static Analysis, Pascal Van Hentenryck (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 345–360.

[31] Andreas Podelski and Andrey Rybalchenko. 2004. A complete
method for the synthesis of linear ranking functions. In International
Workshop on Verification, Model Checking, and Abstract Interpretation.
Springer, 239–251.

[32] Andreas Podelski and Andrey Rybalchenko. 2004. Transition invari-
ants. In Logic in Computer Science, 2004. Proceedings of the 19th Annual
IEEE Symposium on. IEEE, 32–41.

[33] Koushik Sen. 2007. Concolic testing. In Proceedings of the twenty-
second IEEE/ACM international conference on Automated software en-
gineering. ACM.

[34] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic
unit testing engine for C. SIGSOFT Softw. Eng. Notes 30, 5 (2005).

[35] Damien Sereni. 2006. Termination analysis of higher-order functional
programs. Ph.D. Dissertation. Oxford University.

[36] Damien Sereni and Neil D. Jones. 2005. Termination Analysis of
Higher-Order Functional Programs. In Programming Languages and
Systems,Third Asian Symposium, APLAS 2005, Tsukuba, Japan, Novem-
ber 2-5, 2005, Proceedings, Vol. 3780. Springer.

[37] Yi-Dong Shen, Jia-Huai You, Li-Yan Yuan, Samuel S. P. Shen, and
Qiang Yang. 2003. A Dynamic Approach to Characterizing Termi-
nation of General Logic Programs. ACM Trans. Comput. Logic 4, 4
(Oct. 2003), 417–430.

[38] Jeffrey Mark Siskind and Barak A. Pearlmutter. 2007. First-class Non-
standard Interpretations by Opening Closures. In Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’07). ACM, New York, NY, USA, 71–76.
DOI:http://dx.doi.org/10.1145/1190216.1190230

[39] René Thiemann and Jürgen Giesl. 2003. Size-change termination for
term rewriting. In International Conference on Rewriting Techniques
and Applications. Springer, 264–278.

[40] Sam Tobin-Hochstadt and David Van Horn. 2012. Higher-order sym-
bolic execution via contracts. In ACM SIGPLAN Notices, Vol. 47. ACM,
537–554.

[41] Aliaksei Tsitovich, Natasha Sharygina, Christoph M Wintersteiger,
and Daniel Kroening. 2011. Loop summarization and termination
analysis. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 81–95.

[42] Alan M. Turing. 1937. On Computable Numbers, with an Application
to the Entscheidungsproblem. Proceedings of the LondonMathematical
Society s2-42, 1 (1937), 230–265.

[43] David Van Horn and Matthew Might. 2010. Abstracting Abstract Ma-
chines. In Proceedings of the 15th ACM SIGPLAN International Confer-
ence on Functional Programming. ACM.

[44] David Van Horn and Matthew Might. 2011. Abstracting abstract ma-
chines: a systematic approach to higher-order program analysis. Com-
mun. ACM 54 (Sept. 2011).

[45] Niki Vazou, Eric L Seidel, and Ranjit Jhala. 2014. From Safety To Termi-
nation And Back: SMT-Based Verification For Lazy Languages. arXiv
preprint arXiv:1401.6227 (2014).

[46] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Si-
mon P. Jones. 2014. Refinement Types for Haskell. In Proceedings
of the 19th ACM SIGPLAN International Conference on Functional Pro-
gramming. ACM.

[47] Helga Velroyen and Philipp Rümmer. 2008. Non-termination check-
ing for imperative programs. In International Conference on Tests and
Proofs. Springer, 154–170.

[48] Hongwei Xi. 2002. Dependent types for program termination verifi-
cation. Higher-Order and Symbolic Computation 15, 1 (2002), 91–131.

http://dx.doi.org/10.1145/1190216.1190230

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

[Expressions] 𝑒 ∶∶= o | 𝑏 | (𝜆 (⃗⃗ ⃗⃗𝑥) 𝑒) | 𝑥
| (𝑒 ⃗𝑒) | (term/c 𝑒)

[Value Literals] 𝑏 ∶∶= 0 | − 1| 1 | …
[Primitives] o ∶∶= + | cons | car |cdr | …

[Values] 𝑣 ∶∶= o | 𝑏 | (𝑣, 𝑣) | Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)
| term/c(Clo(⃗⃗ ⃗⃗𝑥, 𝑒, 𝜌))

[Size-change Table] 𝑚 ∈ 𝑣 ⇀ ⃗𝑣 × 𝑔
[Size-change Graph] 𝑔 ∈ 𝒫(ℕ × 𝑟 × ℕ)

[Change] 𝑟 ∶∶= → | → =

Figure 12. Syntax of 𝜆CSCT.

Prim

𝜌 ⊢ o ⇓ o

Base

𝜌 ⊢ 𝑏 ⇓ 𝑏

Lam

𝜌 ⊢ (𝜆 (⃗⃗ ⃗⃗𝑥) 𝑒) ⇓ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)
Var

𝜌 ⊢ 𝑥 ⇓ 𝜌(𝑥)

App-Clo
𝜌 ⊢ 𝑒 ⇓ Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′) 𝜌 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥

𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥] ⊢ 𝑒′ ⇓ 𝑎SC

𝜌 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⇓ 𝑎SC

SC-Err

𝜌, ⊥ ⊢ 𝑒 ⬇ errorSC

SC-Prim

𝜌, 𝑚 ⊢ o ⬇ o

SC-Base

𝜌, 𝑚 ⊢ 𝑏 ⬇ 𝑏

SC-Lam

𝜌, 𝑚 ⊢ (𝜆 (⃗⃗ ⃗⃗𝑥) 𝑒) ⬇ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)
SC-Var

𝜌, 𝑚 ⊢ 𝑥 ⬇ 𝜌(𝑥)

SC-If-T
𝜌, 𝑚 ⊢ 𝑒 ⬇ 0 𝜌, 𝑚 ⊢ 𝑒1 ⬇ 𝑎SC

𝜌, 𝑚 ⊢ (if0 𝑒 𝑒1 𝑒2) ⬇ 𝑎SC

SC-If-F
𝜌, 𝑚 ⊢ 𝑒 ⬇ 𝑣 where 𝑣≠0 𝜌, 𝑚 ⊢ 𝑒2 ⬇ 𝑎SC

𝜌, 𝑚 ⊢ (if0 𝑒 𝑒1 𝑒2) ⬇ 𝑎SC

SC-App-Clo
𝜌, 𝑚 ⊢ 𝑒 ⬇ Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′) 𝜌, 𝑚 ⊢ ⃗⃗⃗ ⃗⃗⃗ ⃗𝑒𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥

𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], update(𝑚,Clo(⃗⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝑎
𝜌, 𝑚 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⬇ 𝑎

Figure 11. Standard and Terminating semantics of
𝜆SCT.

A Supplemental material
Proof of Theorem 3.1

Proof. Consider an infinite sequence of function calls. By
Lemma A.1 below, there’s a closure that keeps being called.
The sequence of arguments to this closure cannot satisfy
the size-change property an infinite number of times. The
diverging program that results in this call sequence will be
killed. □

LemmaA.1 (Recurring closure). Along any infinite sequence
of function calls, there is at least one closure that is called in-
finitely often.

Proof. Consider the sequence of closures Clo(𝑥1, 𝑒1, 𝜌1), …,
Clo(𝑥𝑖, 𝑒𝑖, 𝜌𝑖), … along the infinite call sequence.

• Case 1: The closures come from a finite set. At least
one must repeat infinitely often.

• Case 2:There are fresh closures that keep being gener-
ated dynamically. Because new infinite closures must
be generated through finite 𝜆 forms, there must be
some infinite subset of closures Clo(𝑥𝑖, 𝑒𝑖, _) gener-
ated by one same form (𝜆 (𝑥𝑖) 𝑒𝑖). LetClo(𝑥𝑚, 𝑒𝑚, _)
be the set of closures whose body 𝑒𝑚 contains this
form (𝜆 (𝑥𝑖) 𝑒𝑖).
– Claim: There must be some closure Clo(𝑥𝑗, 𝑒𝑗, 𝜌𝑗)

that keeps being called infinitely often.
– Proof: By induction on the lexical depth of (𝜆 (𝑥𝑚) 𝑒𝑚).

∗ Subcase 1: (𝜆 (𝑥𝑚) 𝑒𝑚) has lexical depth 0 (i.e.
it is a top-level 𝜆). Because it is not enclosed by
any 𝜆, the closureClo(𝑥𝑚, 𝑒𝑚, {}) is created only
once. By assumption,Clo(𝑥𝑚, 𝑒𝑚, {}) is called in-
finitely often to dynamically create the infinite
closure set Clo(𝑥𝑖, 𝑒𝑖, _).

∗ Subcase 2: (𝜆 (𝑥𝑚) 𝑒𝑚) is directly enclosed by
(𝜆 (𝑥𝑛) 𝑒𝑛).
⋅ Subsubcase 2a: The set Clo(𝑥𝑚, 𝑒𝑚, _) is finite:
at least one of them is called infinitely often to
generate the infinite closure set Clo(𝑥𝑖, 𝑒𝑖, _).

⋅ Subsubcase 2b: The set Clo(𝑥𝑚, 𝑒𝑚, _) is infi-
nite: apply the induction hypothesis on (𝜆 (𝑥𝑛) 𝑒𝑛)
(where new 𝑖 is 𝑚 and new 𝑚 is 𝑛).

□

Conference’17, July 2017, Washington, DC, USAPhúc C. Nguyễn, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn

Prim

𝜌 ⊢ o ⇓ o

Base

𝜌 ⊢ 𝑏 ⇓ 𝑏
Lam

𝜌 ⊢ (𝜆 (⃗⃗ ⃗⃗𝑥) 𝑒) ⇓ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)
Var

𝜌 ⊢ 𝑥 ⇓ 𝜌(𝑥)

Wrap-Lam
𝜌 ⊢ 𝑒 ⇓ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)

𝜌 ⊢ (term/c 𝑒) ⇓ term/c(Clo(⃗⃗⃗𝑥, 𝑒, 𝜌))

Wrap-Prim
𝜌 ⊢ 𝑒 ⇓ o

𝜌 ⊢ (term/c 𝑒) ⇓ o

App-Clo
𝜌 ⊢ 𝑒 ⇓ Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′) 𝜌 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥

𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥] ⊢ 𝑒′ ⇓ 𝑎SC

𝜌 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⇓ 𝑎SC

App-Term
𝜌 ⊢ 𝑒 ⇓ term/c(Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′)) 𝜌 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝜌𝑥 ⇓ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥

𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], update({},Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝑎SC

𝜌 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⇓ 𝑎SC

SC-Err

𝜌, ⊥ ⊢ 𝑒 ⬇ errorSC

SC-Prim

𝜌, 𝑚 ⊢ o ⬇ o

SC-Base

𝜌, 𝑚 ⊢ 𝑏 ⬇ 𝑏

SC-Lam

𝜌, 𝑚 ⊢ (𝜆 (⃗⃗ ⃗⃗𝑥) 𝑒) ⬇ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)
SC-Var

𝜌, 𝑚 ⊢ 𝑥 ⬇ 𝜌(𝑥)

SC-Wrap-Lam
𝜌, 𝑚 ⊢ 𝑒 ⬇ Clo(⃗⃗⃗𝑥, 𝑒, 𝜌)

𝜌, 𝑚 ⊢ (term/c 𝑒) ⬇ term/c(Clo(⃗⃗ ⃗⃗𝑥, 𝑒, 𝜌))

SC-Wrap-Prim
𝜌, 𝑚 ⊢ 𝑒 ⬇ o

𝜌, 𝑚 ⊢ (term/c 𝑒) ⬇ o

SC-App-Clo
𝜌, 𝑚 ⊢ 𝑒 ⬇ Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′) 𝜌, 𝑚 ⊢ ⃗⃗⃗ ⃗⃗⃗ ⃗𝑒𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥

𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], update(𝑚,Clo(⃗⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝑎SC

𝜌, 𝑚 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⬇ 𝑎SC

SC-App-Term
𝜌, 𝑚 ⊢ 𝑒 ⬇ term/c(Clo(⃗⃗⃗𝑥, 𝑒′, 𝜌′)) 𝜌, 𝑚 ⊢ ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥 ⬇ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥
𝜌′[⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑥 ↦ 𝑣𝑥], update(𝑚,Clo(⃗⃗ ⃗⃗𝑥, 𝑒′, 𝜌′), ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑣𝑥) ⊢ 𝑒′ ⬇ 𝑎SC

𝜌, 𝑚 ⊢ (𝑒 ⃗⃗⃗ ⃗⃗ ⃗⃗𝑒𝑥) ⬇ 𝑎SC

Figure 13. Semantics of 𝜆CSCT.

Size-Change Termination as a Contract Conference’17, July 2017, Washington, DC, USA

	Abstract
	1 Size-change contracts
	2 Examples and intuitions
	2.1 The factorial of termination papers
	2.2 Keeping closures in order
	2.3 Termination and blame
	2.4 The power of dynamic enforcement

	3 Dynamic SCT monitoring
	3.1 A terminating semantics
	3.2 Updating and monitoring size-change graphs
	3.3 Well-founded partial order
	3.4 Totality of evaluation
	3.5 Soundness and completeness
	3.6 Termination checking as a contract

	4 Static SCT Verification
	4.1 Extended semantics
	4.2 Ackermann revisited

	5 Implementation and evaluation
	5.1 Evaluation

	6 Related work
	6.1 Dynamic termination checking
	6.2 Static termination checking
	6.3 Soft contract verification

	7 Conclusion
	Acknowledgments
	References
	A Supplemental material

