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ABSTRACT

Static analysis aims to approximate dynamic program behaviors statically. This task

brings one up against the fundamental limits of computability. As identifying any nontrivial

program property is undecidable in the general case, we must compromise by allowing for

imprecision in order to ensure computability—with yet further compromises permitting us

to place strict upper bounds on analysis complexity. Deciding how this compromise should

be struck is the central challenge of static analysis.

This dissertation extends the methodology of abstracting abstract machines (AAM),

a systematic approach to the abstract interpretation of abstract-machine semantics, to

encompass a well-defined notion of polyvariance. The polyvariance of a static analysis,

broadly construed, is the degree to which variables or syntactic program points are differen-

tiated into a multiplicity of static approximations of their dynamic behavior. Increasing the

polyvariance of an analysis adjusts its compromise in favor of precision, although particular

flavors of polyvariance may vary widely in their efficiency (and efficacy) for particular targets.

We propose that, in an AAM setting, allocation characterizes polyvariance; that is, the

polyvariance of an analysis can be entirely determined by the allocation of abstract addresses.

Some forms of polyvariance cannot be implemented without necessary dynamic information;

however, if the instrumentation of an analysis is left open as a parameter, we can show both

that every form of polyvariance has an abstract allocator and that every tuning of abstract

allocation represents a sound form of polyvariance. Polyvariance as a design space is not

all-encompassing; however, we observe it to be surprisingly broad, and include techniques

from type systems, abstract interpretations, and other methods, along with fundamental

variations on the structure of analyses.

Our investigation culminates in a novel form of introspective polyvariance that yields

a guarantee of perfect precision in its modeling of the call stack and incurs no asymptotic

complexity overhead. We show how this form of polyvariance may be implemented in AAM-

style analyses with only a trivial change to existing code and present a machine-verified proof

of its bisimulation with an incomputable model of perfect stack precision.
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CHAPTER 0

THESIS

Polyvariance may be soundly, efficiently, and arbitrarily refined, permitting static anal-

yses to adapt a style more efficient for their target than existing nonintrospective heuristics.

To demonstrate this thesis, we produce a parametric static analysis that precisely ranges

over all conceivable styles of polyvariance. We explore adaptive approaches which introspect

on the behavior of the analysis as it runs to determine their polyvariance, and we produce one

such form of introspective polyvariance that hits the perfect sweet spot in terms of efficiency.

This technique guarantees a certain form of perfect precision “for free”—specifically, at no

asymptotic complexity overhead, no development overhead, and lower average complexity

over a set of benchmarks.

Chapter 1 introduces central concepts from formal semantics, static analysis, and

abstract interpretation using a toy calculator language. Chapter 1 should be skipped or

skimmed by readers familiar with these topics.

Chapter 2 introduces operational semantics for the λ-calculus in several different styles,

explains their relation to familiar definitional interpreters, and primes the reader with design

trade-offs relevant to approximation. Chapter 2 should also be skimmed by readers especially

familiar.

Chapter 3 reviews the abstracting abstract machines (AAM) methodology, polyvari-

ance, store widening, traditional approaches to soundness, and the a posteriori soundness

theorem which guarantees the soundness of all abstract allocators.

Chapter 4 produces a parametric semantics freely tunable by both an instrumentation

and an abstract allocator. It then surveys a variety of existing styles of polyvariance

(instantiating each within our framework), novel strategies and introspective approaches,

explores the design space in a more principled way, and provides tools and theory for

navigating this space before or during an analysis.
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Chapter 5 introduces the problem of return-flow conflation in higher-order flow analysis,

provides an incomputable model of perfect stack precision, and discusses three existing

computable approaches to obtaining perfect stack precision (highlighting drawbacks and

lessons learned). It then provides an unexpected form of introspective polyvariance which

adapts the allocation of continuations to the behavior of an analysis ensuring perfect stack

precision (“for free”). Chapter 5 also presents a machine-verified proof of this technique’s

equivalence with the incomputable model used to define perfect stack precision.

Chapter 6 discusses high-performance implementation techniques. This includes ex-

tending an approach to encoding these analyses as linear algebra which may be solved

efficiently on a graphics processing unit (GPU) and a novel sparse-matrix format which

permits efficient dynamic matrix updates within this approach.



CHAPTER 1

STATIC ANALYSIS

The problem of program analysis (learning how a program behaves) may be broken into

two very different approaches. Dynamic analysis (or profiling) is the task of understanding

how a program behaves when it is executed. Dynamic analyses gather information from ac-

tual runs of a program which aim at being representative of that program’s likely behaviors.

Such information is useful for optimizing the layout of a program in memory to improve

locality, for determining which portions of a program dominate a typical runtime and are

most important to optimize, for debugging, and for many other applications.

Static analysis, by contrast, is the task of understanding how a program may behave (or

must behave) given only its source text. Static analyses attempt to learn the same kind

of information a programmer uses when writing code (e.g., abstract data types, temporal

properties, and invariants), but do so with perfect mathematical rigor to yield true guaran-

tees regarding program behavior. While rigor is as natural for a computer as it is unnatural

for a programmer, it may also be that creativity is as unnatural for a computer as it is

natural for a programmer. Suitably, a part of the challenge in designing a static analysis

is the distance between the enormous space of sound variations in exactly how a computer

might go about this task and the much smaller range of strategies which would model any

particular program particularly well. This is a challenge of balancing guarantees of analysis

efficiency with guarantees of analysis precision and the challenge of being creative in how

this balance is structured for a particular target of analysis.

Static analysis brings one up against the fundamental limits of computability, the halting

problem, Rice’s theorem (Rice, 1953), and related limitations. Any static analysis (of a

Turing-equivalent language) which guarantees a precise result for a nontrival property of its

target program will also be incomputable in the general case. Moreover, this same trade-off

exists for computable analyses as well. An analysis which can guarantee a better complexity

class for its runtime must also give up the ability to guarentee a degree of precision (e.g.,

those properties of programs which would have required enumerating a data structure whose
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size is in Θ(f(n)) to prove). On the other hand, in the purely practical case, there is a

well-known paradox where more precision can also tend to be less expensive. For example,

Wright and Jagannathan (1998) discuss an exponential-time analysis which in many typical

cases improves on both the precision and performance of a classic polynomial-time analysis.

The next chapters discuss a principled approach to constructing formal semantics of

programming languages, and functional (higher-order) languages in particular, and to ab-

stracting those semantics to obtain an approximation in a variety of styles. The remainder

of this chapter introduces formal semantics using a toy calculator language, applies the

methodology of abstract interpretation to obtain an approximation of these semantics, and

discusses some of the central challenges to scaling these ideas up to production.

1.1 Formal Semantics
Consider a language of basic arithmetic where we can add, subtract, and multiply

integers. We can define the language inductively using a context-free grammar.

a ∈ ArithExp ::= (+ a a) [addition]

| (- a a) [subtraction]

| (* a a) [multiplication]

| z [a constant]

z ∈ Z � {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} [integers]

Each a is either an arithmetic expression of the form (+ a1 a2) or (- a1 a2) or (* a1 a2)

or it is simply a particular integer z. Each a1 and a2 inside a are themselves expressions,

allowing us to build up arbitrarily complex arithmetic (using our three operations), and

making ArithExp an infinite set.

With only the set ArithExp defined, its elements a are meaningless pieces of syntax.

A value like (+ 1 1) does not mean 2, is not equivalent to 2, and cannot be reduced to 2,

unless we formally define an interpretation for it which connects the dots with mathematical

rigor. There are a many good systems for doing this, and for defining computer languages,

there are at least three fundamental approaches which are common: axiomatic semantics,

denotational semantics, and operational semantics (Winskel, 1993). An axiomatic semantics

defines a language in terms of logical constraints—“this is what is true about an expression”.

A denotational semantics defines a language in terms of otherwise established mathematical

entities—“this is what an expression denotes within an understood setting”. An operational

semantics defines a language in terms of its operational behavior—“this is how an expression
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is reduced and evaluated step by step”. Each of these approaches has its advantages and

applications which suit it well. We will use operational semantics because they are related

to practical program interpreters and are most similar to language implementations and the

operation of actual computing machinery. An operational semantics is also convenient for

bisimulation proofs which require us to take subtle differences in program evaluation into

account.

We can define an operational semantics of our arithmetic language using a rule of

inference for each syntactic form in the language. We define an evaluation function which

reduces a given expression to its integer value.

(→calc) : ArithExp → Z

In each rule, the statements above the line are called the antecedents, and the statement

under the line is called their consequent; one logical statement proceeds from a conjunction

of the others.

z ∈ Z
z →calc z

a1 →calc z1 a2 →calc z2
(- a1 a2) →calc z1 − z2

a1 →calc z1 a2 →calc z2
(+ a1 a2) →calc z1 + z2

a1 →calc z1 a2 →calc z2
(* a1 a2) →calc z1 · z2

The first rule is the axiom of our formal system. It says, if z is an integer, then z

evaluates to itself. The second rule defines the meaning of (+ a1 a2), and so all addition

in our language. It says, if a1 evaluates to an integer z1 and a2 evaluates to an integer z2,

then (+ a1 a2) evaluates to an integer z1 + z2. We can visualize the full derivation tree for

an expression (+ 1 2) like so:

1 ∈ Z
1 →calc 1

2 ∈ Z
2 →calc 2

(+ 1 2) →calc 3

Because 1 is an integer, the syntax 1 evalutes to the integer 1. Because 2 is an integer,

the syntax 2 evalutes to the integer 2. Because 1 evaluates to 1 and 2 evaluates to 2, (+ 1 2)

evaluates to 1 + 2 and thus 3.

Now consider the expression:

(+ (+ 1 4) (* (- 5 8) 2))

A full derivation tree for this expression follows from the same principals as before:
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1 ∈ Z
1 →calc 1

4 ∈ Z
4 →calc 4

(+ 1 4) →calc 5

5 ∈ Z
5 →calc 5

8 ∈ Z
8 →calc 8

(- 5 8) →calc −3
2 ∈ Z

2 →calc 2

(* (- 5 8) 2) →calc −6

(+ (+ 1 4) (* (- 5 8) 2)) →calc −1

1.2 Abstract Interpretation
Abstract interpretation is a particular theory for the static analysis of programs, put

forth in the course of a series of papers: Cousot and Cousot (1976, 1977a,b,c). The central

idea is to statically determine approximate information about a program from a concrete or

exact semantics as automatically as possible. Instead of performing an interpretation of a

language which precisely determines the meaning of each expression, we derive an abstract

interpretation which approximately determines the meaning of each expression. To produce

an abstract semantics given our concrete (exact) semantics, we first define abstraction and

concretization functions which connect our concrete domains (e.g., Z) to abstract ones (e.g.,

Ẑ). Typographically, we give abstract entities a hat to easily differentiate between concrete

and abstract without losing track of basic underlying roles. In order to perform a sign

analysis which differentiates between positive and negative integers where possible (but

does not differentiate between two positive integers), we could define abstract integers as a

set of signs:

ẑ ∈ Ẑ � {NEG, ZERO, POS} [signs]

From here, we would like to produce composable abstraction and concretization functions

which describe the relationship between our concrete interpretation (→calc) and our forth-

coming sign analysis (�sign). As our approximation stands, however, we would need to

allow imprecision within our concrete integers domain so a value like POS has a particular

value it concretizes to. We would like to say it stands in for {1, 2, 3, . . .} (i.e., all values that

abstract to POS), so we must use sets of exact integers as our concrete values domain. This,

in turn, necessitates we allow further imprecision within our abstract integers domain so a

range of concrete values like {0, 1, 2} can be abstracted to {ZERO, POS} (which would stand

in for values that are either zero, or a positive integer). For this reason, we lift both integers

and signs to respective lattices (e.g., their power sets).

zs ∈ ZS � P(Z) [concrete values]

�zs ∈ �ZS � P(Ẑ) [abstract values]

Every granularity of precision in both domains now has a nearest correspondent in the other.
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Z

...

· · · {−1, 0} {−1, 1} {0, 1} · · ·

· · · {−1} {0} {1} · · ·

∅

{NEG, ZERO, POS}

{NEG, ZERO} {NEG, POS} {ZERO, POS}

{NEG} {ZERO} {POS}

∅

To connect our concrete domains to our abstract domains, we produce an abstraction

function αZS : ZS → �ZS and a concretization function γZS : �ZS → ZS . For our simple sign

analysis, these functions could be:

αZS (zs) � {NEG | z ∈ zs ∧ z < 0}

∪ {ZERO | z ∈ zs ∧ z = 0}

∪ {POS | z ∈ zs ∧ z > 0}

γZS ( �zs) � {z | z < 0 ∧ z ∈ Z ∧ NEG ∈ �zs}

∪ {z | z = 0 ∧ ZERO ∈ �zs}

∪ {z | z > 0 ∧ z ∈ Z ∧ POS ∈ �zs}

To construct different approximations, and thereby different kinds of analyses, we would

vary the abstract domains and Galois connections used. We must respect two important

properties, however. First, both functions (abstraction and concretization) must be mono-

tonic (i.e., zs1 ⊆ zs2 =⇒ αZS (zs1) ⊆ αZS (zs2)). Second, both functions are constrained by

the other: αZS (zs) ⊆ �zs ⇐⇒ zs ⊆ γZS ( �zs). These two properties cause our defined notions

of abstraction and concretization to form a monotone Galois connection:

ZS −−−−−→←←−−−−−
αZS

γZS �ZS

Each of these functions uniquely determines its adjoint. Given a monotonic abstraction

function only (e.g., αZS ), its corresponding concretization function can be calculated:

γZS ( �zs) =
�

{zs ∈ ZS | αZS (zs) ⊆ �zs}
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That some α and γ form a monotone Galois connection further implies that γ◦α is expansive

and that α ◦ γ is reductive:

Id � γ ◦ α i.e., ∀zs ∈ ZS . zs ⊆ γZS (αZS (zs))

α ◦ γ � Id i.e., ∀ �zs ∈ �ZS . αZS (γZS ( �zs)) ⊆ �zs

With a Galois connection for integers, we may produce a derived Galois connection for

arithmetic expressions. We start by generalizing exact arithmetic expressions to a concrete

lattice and producing a corresponding abstract lattice.

as ∈ AS ::= (+ as as)

| (- as as)

| (* as as)

| zs

�as ∈ �AS ::= (+ �as �as)

| (- �as �as)

| (* �as �as)

| �zs

Although not set inclusion (⊆) as with our power-set domains, the orders for these

lattices (�) are straightforward and distribute over each of the arithmetic operations. For

example, �as1 � �as �1 ∧�as2 � �as �2 ⇐⇒ (+ �as1 �as2) � (+ �as �1 �as �2).
To connect our domains of concrete syntax with their respective concrete lattice domains,

we define a pair of injection functions IZS : Z → ZS and IAS : ArithExp → AS which place

exact syntactic values within their concrete lattices.

IZS (z) � {z}

IAS (a) �





(+ IAS (a1) IAS (a2)) a = (+ a1 a2)
(- IAS (a1) IAS (a2)) a = (- a1 a2)
(* IAS (a1) IAS (a2)) a = (* a1 a2)
IZS (z) a = z

Then, as before, we may define a Galois connection between AS and �AS .

αAS (as) �





(+ αAS (as1) αAS (as2)) as = (+ as1 as2)
(- αAS (as1) αAS (as2)) as = (- as1 as2)
(* αAS (as1) αAS (as2)) as = (* as1 as2)
αZS (zs) as = zs

We may now consider abstracting an expression, and then evaluating it approximately,

using some abstract evaluation function (�sign), to determine which sign or signs its resulting

value could be.
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(+ (+ 1 4) (* (- 5 8) 2))
→calc−−−−→ −1

IAS

�
(+ (+ {1} {4}) (* (- {5} {8}) {2}))

αAS

�

(+ (+ {POS} {POS}) (* (- {POS} {POS}) {POS})) �sign−−−−→ ?

As we have not defined (�sign), we are not sure what value it would produce (hence a “?”).

We know that a concrete evaluation of the example expression yields -1 and that -1 injected

and abstracted is {NEG}.

(+ (+ 1 4) (* (- 5 8) 2))
→calc−−−−→ −1

IAS

� IZS
�

(+ (+ {1} {4}) (* (- {5} {8}) {2})) {−1}
αAS

� αZS

�
(+ (+ {POS} {POS}) (* (- {POS} {POS}) {POS})) {NEG}

If the abstract evaluation function (�sign) must produce values that soundly simulate those

computed by (→calc), then we know whatever approximate value it yields should be at least

a superset of {NEG}, with {NEG} itself representing the best possible precision. If the value

given by (�sign) does not include the possibility of negative numbers, then our approximate

evaluation of the expression �as is unsound (incorrect).

In the general case, we must show that:

a →calc z ∧ αAS (IAS (a)) � �as =⇒ �as �sign �zs ∧ αZS (IZS (z)) ⊆ �zs

Or diagrammatically:
a

→calc−−−−→ z

IAS

� IZS
�

as zs

αAS

�� αZS

�⊆

�as �sign−−−−→ �zs

This soundness property can form a basis for either justifying an abstract interpretation as

sound a posteriori, or for constructing one such that it is sound (Cousot and Cousot, 1979).
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�zs ∈ �ZS
�zs �sign �zs

�as1 �sign �zs1 �as2 �sign �zs2
(- �as1 �as2) �sign �zs1⊖ �zs2

�as1 �sign �zs1 �as2 �sign �zs2
(+ �as1 �as2) �sign �zs1⊕ �zs2

�as1 �sign �zs1 �as2 �sign �zs2
(* �as1 �as2) �sign �zs1⊙ �zs2

Each rule of inference in (→calc) has a corresponding rule in (�sign). We can directly

calculate the most precise possible operations (⊕), (⊖), (⊙) on sets of signs ( �zs) such

that the abstract evaluation function (�sign) is sound with respect to (→calc) and αZS . The

most precise sound abstract interpretation is the one which behaves the same as concretizing,

concretely interpreting, and then abstracting again.

�zs1⊕ �zs2 = αZS ({z1 + z2 | z1 ∈ γZS ( �zs1) ∧ z2 ∈ γZS ( �zs2)})

�zs1⊖ �zs2 = αZS ({z1 − z2 | z1 ∈ γZS ( �zs1) ∧ z2 ∈ γZS ( �zs2)})

�zs1⊙ �zs2 = αZS ({z1 · z2 | z1 ∈ γZS ( �zs1) ∧ z2 ∈ γZS ( �zs2)})

Given these tunings, for example, the operation {POS}⊙ {NEG} yields {NEG} and the op-

eration {NEG}⊖ {NEG} yields {POS, ZERO, NEG}. If any of these operations were defined to

always return {POS, ZERO, NEG}, only precision would be lost and not soundness.

The proof tree for αAS (IAS ((+ 1 2))) �sign {POS} is:

{POS} ∈ �ZS
{POS} �sign {POS}

{POS} ∈ �ZS
{POS} �sign {POS}

(+ {POS} {POS}) �sign {POS}
The proof tree for our larger example would look like:

{POS} ∈ �ZS
{POS} �sign {POS}

{POS} ∈ �ZS
{POS} �sign {POS}

(+ {POS} {POS}) �sign {POS}

{POS} ∈ �ZS
{POS} �sign {POS}

{POS} ∈ �ZS
{POS} �sign {POS}

(- {POS} {POS}) �sign {POS, ZERO, NEG}
{POS} ∈ �ZS

{POS} �sign {POS}
(* (- {POS} {POS}) {POS}) �sign {POS, ZERO, NEG}

(+ (+ {POS} {POS}) (* (- {POS} {POS}) {POS})) �sign {POS, ZERO, NEG}

Unfortunately, this abstract interpretation has given us no information at all. It is a

good example of how even the most precise abstract interpretation which respects a given

Galois connection can easily lose precision due to the fundamental loss of structure in the

abstract domains. Our style of abstraction is simply unable to determine anything in general

about a positive number subtracted from another positive number. Because imprecisions

become compounded as evaluation progresses, this top value (�), which says nothing about

the number it represents, propagates all the way to our final result.
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1.3 Central Challenges
Dynamic languages, and dynamic program behaviors generally, are notoriously difficult

to model precisely. Much work has gone into simply defining a correct concrete semantics

of Python and JavaScript (Guth, 2013; Ranson et al., 2008; Smeding, 2009). Perhaps the

most compelling effort to date at giving a complete and tractable semantics for JavaScript

has been Guha et al. (2010) with λJS and its successor, Politz et al. (2012) with λS5 . This

approach reduces programs to a simple core language consisting of fewer than 35 syntactic

forms, reifying the hidden and implicit complexity of full JavaScript as explicit complexity

written in the core language.

Desugaring is appealing for analysis designers as it gives a simple and precise semantics

to abstract; however, it also presents one of the major obstacles to precise analysis as it adds

a significant runtime environment and layers of indirection through it. Consider an example

the authors of λS5 use to motivate the need for their carefully constructed semantics: []

+ {} yields the string "[object Object]". Strangely enough, this behavior is correct as

defined by the ECMAScript specification for addition—a complex algorithm encompassing

a number of special cases which can interact in unexpected ways (ECMA, 2011). The

desugaring process for λS5 replaces addition with a function call to %PrimAdd from the

runtime environment. %PrimAdd in-turn calls %ToPrimitive on both its arguments before

breaking into cases. This means that for any uses of addition to return precise results, or

likely anything other than � (a total loss of precision), an analysis is needed which can

distinguish between different uses of %ToPrimitive through multiple layers of indirection.

An analysis of %ToPrimitive which is unique both to its call site in %PrimAdd and to

%PrimAdd’s call site in turn could be capable of producing a precise value. Context sensitive

techniques like this are forms of polyvariance, our broader subject, and increase the expense

of an analysis but also its potential for higher precision.

Unlike the toy language of this chapter, a concrete evaluation of a program written

in a Turing-equivalent language may not terminate even when the program is itself finite.

Finitely modeling programs with this capacity for arbitrary complexity requires an analysis

designer to select an appropriate compromise between computational expense and precision.

In the case of call sensitivity (context sensitivity using calling context) and many other forms

of polyvariance, the compromise is an unpleasant one leading to analyses with worst-case

run times that are exponential in the size of the program (Van Horn and Mairson, 2008).

As the desugarer for λS5 bloats even small programs to more than ten thousand lines,

applying context-sensitivity to every function in this case is sure to result in an absurdly
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time-consuming analysis. Devising strategies for performing a compromise which is more

efficient in general, or which is better adapted to a particular target of analysis, amounts to

one of the central challenges of static analysis.

Better understanding the design space of these trade-offs, allowing for introspection on

the ongoing behavior of a particular analysis, and adapting the compromise being struck to

suite the target of this analysis and its goals will allow us to take important steps in tackling

the central challenges of static analysis in practice.



CHAPTER 2

OPERATIONAL SEMANTICS

This chapter explores a variety of operational abstract-machine semantics for the untyped

λ-calculus, introduces major components of the machines we will be using, and addresses

some basic trade-offs in designing a semantics for a functional (higher-order) language. As

we progress through this chapter, each formal semantics (i.e., a formal system defining a

language) will be accompanied by an implementation written in Racket (a dialect of Lisp

based on Scheme) to help the intuition for each development (Racket Community, 2015). A

basic familiarity with the untyped λ-calculus and Scheme-like programming languages will

be assumed.

Note, regarding scope, that some symbols will be redefined for each new machine intro-

duced; these symbols are scoped within their local sections.

2.1 Big-Step Semantics
Plotkin (1981) describes a general approach to specifying an evaluation-oriented (i.e.,

operational) semantics called structural operational semantics (SOS). The main idea of SOS

is to break a language into managable components and, using simple manipulations of

these, to define a syntax-directed transition function which can step program evaluation

incrementally from start to finish. Plotkin points out that a transition between machine

states can often be alternately viewed as a single step or viewed as multiple steps and adds

“part of the spirit of our method is to choose steps of the appropriate size”. Kahn (1987)

proposes that a natural and concise approach to SOS is to define inductive transitions which

only take “big” steps directly to a result value. A specification like this is called a big-step

operational semantics or a natural semantics. A big-step semantics can frequently be defined

using fewer rules than other SOS approaches; they tend to be simple and intuitive. Big-step

semantics are the closest operational semantics to denotational semantics in the sense that

they interpret programs directly into values. A denotational semantics connects syntax

to entities in an understood setting and so relies on having established meanings for its
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(define (eval e [rho (hash)])
(match e

[‘(,efun ,earg)
(define vfun (eval efun rho)†)
(define varg (eval earg rho)†)
(match vfun

[‘((lambda (,x) ,ebody) ,rho_lam)
(eval ebody (hash-set rho_lam x varg))‡])]

[‘(lambda (,x) ,ebody)
‘((lambda (,x) ,ebody) ,rho)]

[(? symbol? x)
(hash-ref rho x)]))

Figure 2.1. An interpreter for the direct-style, untyped λ-calculus, written in Racket.
†Direct-style calls. ‡A tail-recursive call.

denotations. In a big-step operational semantics, the transition function does all the work

of evaluating a program internally and so encapsulates the meaning of program syntax.

We may define the untyped λ-calculus inductively using a context-free grammar:

f, e ∈ LamExp ::= (f e) [application]

| lam [λ-abstraction]

| x [variable reference]

lam ∈ Lam ::= (λ (x) e) [λ-abstractions]

x, y ∈ Var is a set of identifiers [variables]

Figure 2.1 shows an interpreter for this language. Expressions are evaluated in the context of

an environment rho. Variable references are determined by the current environment. Closure

creation pairs a syntactic lambda with the current environment. Call sites require a recursive

call to eval for each subexpression before making a tail-recursive call for evaluating the

body of the function being applied. We allow the stack (i.e., the continuation or evaluation

context) to be modeled implicitly, in meta-circular fashion, by the stack in the host language.

Formally, program states (ς) range over pairs of a control expression (e) and an envi-

ronment (ρ). Environments in turn are partial functions from variables to values. As our

language is the pure λ-calculus with no primitive values or operations added, every value is

a closure clo which pairs a syntactic lambda with an environment over which it is closed.
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ς ∈ Σ � LamExp× Env

ρ ∈ Env � Var � Clo

clo ∈ Clo � Lam× Env

We can produce an evaluation function (→λ) : Σ � Clo which reduces a machine state to

its value, a closure. This function can be defined formally using a rule of inference for each

case in our grammar. First, a lambda in the context of an environment reduces to a closure

which pairs that syntactic lambda with the current environment.

[clo]
((λ (x) e), ρ) →λ ((λ (x) e), ρ)

Second, a variable reference in the context of an environment reduces to the closure bound

to that variable within the current environment.

[var]
(x, ρ) →λ ρ(x)

Third, an application in the context of an environment reduces both the expression in call

position and the expression in argument position, in the context of the current environment,

and then yields whatever value the body of the function invoked reduces to when evaluated

in the context of its closure’s environment (ρλ) extended with a binding for its parameter.

(e1, ρ) →λ ((λ (x) e3), ρλ) (e2, ρ) →λ clo (e3, ρλ[x �→ clo]) →λ clo
�

[app]
((e1 e2), ρ) →λ clo

�

Each of these formal rules corresponds to one of the three match clauses in the Racket

interpreter from Figure 2.1. The first two antecedents in the deduction for a call site are

effectively direct-style recursive uses of (→λ), while the third antecedent is effectively tail

recursion.

This reveals several possible disadvantages to using a big-step semantics, particularly for

the purposes of approximation to a static analysis. To begin with, nontermination is possible

within a (→λ)-step at any point during evaluation and where a step does not terminate,

neither does it have a proof tree. In addition, there are multiple ways nontermination is

possible, due to an infinite number of tail recursions, due to an infinite number of direct

style recursions, or some combination of the two (visually, proof trees are unbounded both

vertically and horizontally).

Furthermore, a big-step semantics gains some of its concision by allowing the call stack

to be represented implicitly instead of explicitly; just as our big-step Racket interpreter was

able to model the stack in a meta-circular way, so is the stack represented implicitly in the
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structure of proof trees for (→λ) deductions. If some (e, ρ) →λ clo (read “e, rho reduces to

clo”) in the context of further inferences, then it is effectively being reduced on the top of

a stack; if not, then the stack is empty. For the purposes of deriving a static analysis from

our semantics, it may not be desirable to hide a program’s behavior in this way.

In Figure 2.2, some examples of proof trees for (→λ) are worked out.

2.2 Small-Step Semantics
A small-step operational semantics is one where each transition relation is computable,

even if the overall evaluation induced by these individual steps may not terminate (Hennessy,

1990). The (→λ)-machine could nonterminate in multiple ways within every reduction step.

The abstract machines of this section can only nonterminate because an infinite number of

steps is required to evaluate a program, never because any specific step nonterminates. In a

Racket interpreter implementing a small-step semantics, every recursive call the interpreter

makes to itself must be a tail call. Unlike a big-step semantics, a small-step semantics is

able to give an accurate account of even a nonterminating program as an infinite sequence of

computable steps. This means that a small-step semantics provides a result we can finitely

approximate, even when it cannot be finitely computed. Transforming our semantics to

use small, computable steps will make it easier to produce a finite approximation of these

semantics in the next chapter.

This section presents two alternative approaches to transforming our semantics to a

small-step SOS. One approach is to explicitly model the stack, giving us finer control over

its behavior and representation and making it easier to explicitly approximate in the next

chapter. Another approach is to entirely elide the problem of managing a stack by using an

intermediate representation (IR) in continuation passing style.

2.2.1 Continuation-Passing-Style Semantics

Continuation passing style (CPS) constrains call sites to tail position so functions may

never return; instead, callers must explicitly pass a continuation forward to be invoked on

the result (Plotkin, 1975). This makes our semantics tail recursive (small-step) and more

convenient to approximate while skipping over the challenges of manually managing a stack

and its abstraction.

CPS is a broadly applicable transformation for compiler optimization and program

analysis (Appel, 2007). If the transformation to CPS records which lambdas correspond

to continuations, a program may again, along with any optimizations and analysis results,

be precisely reconstituted in direct-style form. This means the advantages of CPS can
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be utilized without compromise or loss of information (Kennedy, 2007). The grammar

structurally distinguishes between call-sites call and atomic expressions ae:

call ∈ Call ::= (ae ae . . . ) | (halt ae)

lam ∈ Lam ::= (λ (x . . . ) call)

ae ∈ AExp ::= lam | x

x ∈ Var is a set of program variables

We define the evaluation of programs in this language using a relation (→CE), over states

of an abstract-machine, which determines how the machine transitions from one state to

another. Instead of an evaluation function which interprets machine states directly into

values as in our big-step semantics, we use a transition function which produces the “next”

state of the machine, having performed one small step of computation. States (ς) range over

control expression (a call site), and binding environment components:

ς ∈ Σ � Call× Env

ρ ∈ Env � Var � Clo

clo ∈ Clo � Lam× Env

The only difference between the domains of our big-step machine and those of this one is

that every expression is a call site which may not return and whose arguments may be

atomically evaluated. Otherwise, environments and closures function as before.

Evaluation of atomic expressions is handled by an auxiliary function (A) which produces

a value (clo) for an atomic expression in the context of a state (ς). This is done by a

lookup in the environment and store for variable references (x), and by closure creation for

λ-abstractions (lam). In a language containing syntactic literals, these would be translated

into equivalent semantic values here.

A : AExp× Σ � Clo

A(x, (call , ρ)) � ρ(x)

A(lam, (call , ρ)) � (lam, ρ)

The transition function (→CE) : Σ � Σ yields at most one successor for a given prede-

cessor in the state space Σ. This is defined:



19

(define (eval call [rho (hash)])
(define (atomic-eval ae)

(match ae
[‘(lambda ,args ,call) ‘((lambda ,args ,call) ,rho)]
[(? symbol? x) (hash-ref rho x)]))

(match call
[‘(halt ,ae)
(atomic-eval ae)]

[‘(,aefun ,aeargs ...)
(define vfun (atomic-eval aefun))
(define vargs (map (lambda (ae) (atomic-eval ae)) aeargs))
(match vfun

[‘((lambda ,xs ,callbody) ,rho_lam)
(define rho+ (foldl (lambda (x v rho+)

(hash-set rho+ x v))
rho_lam xs vargs))

(eval callbody rho+)])]))

Figure 2.3. An interpreter for the untyped CPS λ-calculus, written in Racket.

ς� �� �
((aef ae1 . . . aej), ρ) →Σ (call

�, ρ�),where

((λ (x0 . . . xj) call �), ρλ) = A(aef , ς)

cloi = A(aei, ς)

ρ� = ρλ[xi �→ cloi]

Execution steps to the call-site of the lambda invoked (as given by the atomic evaluation of

aef ). This closure’s environment (ρλ) is extended with a binding for each variable xi to the

atomic evaluation of ae i. A state becomes stuck if a halt-form is reached or if the program

is malformed (e.g., a free variable is encountered).

To fully evaluate a program call0 using these transition rules, we inject it into our state

space using a helper I : Call → Σ:

I(call) � (call ,∅)

A small-step interpreter for CPS in Racket is shown in Figure 2.3. Notice that every

recursive call is now in tail position and no stack is required.

We may now perform a standard lifting of (→CE) to a collecting semantics defined over

sets of states.

s ∈ S � P(Σ)
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Such a semantics strictly accumulates reachable states, instead of progressing from one state

to another, collecting the information created over a program’s evaluation. Our collecting

relation (→SCE) is a monotonic, total function that gives a set including the trivially reachable

state I(call0) plus the set of all states immediately succeeding those in its input.

s →SCE s
� � s� = {ς � | ς ∈ s ∧ ς →CE ς

�} ∪ {I(call0)}

If the program call0 terminates, iteration of (→SCE) from ⊥ (i.e., the empty set ∅) does

as well. That is, (→SCE)
n(⊥) is a fixed point containing call0’s full program trace for some

n ∈ N whenever call0 is a terminating program. No such n is guaranteed to exist in the

general case (when call0 is a nonterminating program) as our language (the untyped CPS

λ-calculus) is Turing-equivalent, our semantics is fully precise, and the state space we defined

is infinite.

Unlike with our big-step semantics (where a nonterminating program has no valid proof

tree or value), even nonterminating programs have specific (though infinite and sometimes

incomputable) values. Consider, for example, a small-step reduction of the program Omega

(the u-combinator applied to itself):

(((λ (u) (u u)) (λ (x) (x x))),∅) →CE ((u u), [u �→ ((λ (x) (x x)),∅)])

→CE ((x x), [x �→ ((λ (x) (x x)),∅)])

→CE ((x x), [x �→ ((λ (x) (x x)),∅)])

→CE . . .

Although the program nonterminates, a finite fixed point still exists for (→SCE). Specifically:

{ (((λ (u) (u u)) (λ (x) (x x))),∅),

((u u), [u �→ ((λ (x) (x x)),∅)]),

((x x), [x �→ ((λ (x) (x x)),∅)]) }

The infinite concrete program trace is a closed graph which loops back on itself:

call0 (u u) (x x)
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In most cases, however, nonterminating programs will have concrete evaluations with an

infinite number of distinct states. For example, the following nonterminating sequence of

small-step reductions extends the environment without bound.

(((λ (w) (w w w)) (λ (x y) (x x (λ (z) z)))),∅)

→CE ((w w w), [w �→ ((λ (x y) (x x (λ (z) z))),∅)])

→CE ((x x (λ (z) z)),

ρ0� �� �
[x �→ ((λ (x y) (x x (λ (z) z))),∅), y �→ . . .])

→CE ((x x (λ (z) z)),

ρ1� �� �
[x �→ ((λ (x y) (x x (λ (z) z))),∅), y �→ ((λ (z) z), ρ0)])

→CE ((x x (λ (z) z)),

ρ2� �� �
[x �→ ((λ (x y) (x x (λ (z) z))),∅), y �→ ((λ (z) z), ρ1)])

→CE . . .

Although no finite fixed point for (→SCE) exists in this case, an infinite fixed point does exist

because it ranges over a complete lattice (Tarski, 1955) and in the next chapter, we will be

able to compute an approximation of otherwise incomputable fixed points like this one.

2.2.2 Direct-Style Semantics

We can model a direct-style language with a small-step semantics by passing a stack

along explicitly. For simplicity, we will assume an input converted to monadic normal form

or administrative normal form (ANF) (Danvy, 2003; Flanagan et al., 1993; Kennedy, 2007).

e ∈ ANFExp ::= (let ([x (f ae)]) e) [call]

| ae [return]

f, ae ∈ AExp ::= x | lam [atomic expressions]

lam ∈ Lam ::= (λ (x) e) [lambda abstractions]

x, y ∈ Var is a set of identifiers [variables]

All intermediate expressions are administratively let-bound, and the order of operations is

made explicit as a stack of such lets. This not only simplifies our semantics, but is conve-

nient for analysis as every intermediate expression can naturally be given a unique identifier.

A variety of differently formed continuations are also unified by a single let-continuation.

In Section 2.1, LamExp had two different continuations (one for a subexpression in call

position, another for one in argument position), though we did not have to manage them

explicitly. In the case of a richer intermediate language, there may be a dozen or more
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flavors of continuations (for conditionals, letrec, etc.), so implementing all of these with a

single let-continuation may be to our advantage.

We define the evaluation of programs in this language using a relation (→CEK), over states

(ς) of an abstract machine. These states contain a new component (κ) that encodes the

current list of stack frames.

ς ∈ Σ � ANFExp× Env ×Kont

ρ ∈ Env � Var � Clo

clo ∈ Clo � Lam× Env

κ ∈ Kont � Frame∗

φ ∈ Frame � Var × ANFExp× Env

Stack frames contain a variable to bind upon returning, an expression to return to, and an

environment to reinstate and extend with a return value.

Because each step of this machine must terminate but may rely on evaluating atomic

expressions ae, we again produce a computable atomic-expression evaluator A which encap-

sulates the same two cases as before: closure creation and variable reference.

A : AExp× Σ � Clo

A(x, (e, ρ, κ)) = ρ(x)

A(lam, (e, ρ, κ)) = (lam, ρ)

The transition function (→CEK) : Σ � Σ produces at most one successor for a given

predecessor in the state space. For call sites, this is defined:

ς� �� �
((let ([y (aef aev)]) e), ρ, κ) →CEK (e�, ρ�, κ�),where

((λ (x) e�), ρλ) = A(aef , ς)

clov = A(aev, ς)

ρ� = ρλ[x �→ clov]

κ� = (y, e, ρ) :κ

Control moves into the body of the function invoked (aef ) just as it did in Section 2.2.1,

except a new continuation κ� is produced which extends the current continuation κ with a

stack frame for the let-form binding y.
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For return points, (→CEK) is defined:

ς� �� �
(ae, ρ, (x, e, ρκ) :κ) →CEK (e, ρ�, κ),where

clov = A(ae, ς)

ρ� = ρκ[x �→ clov]

The top stack frame is opened and popped, the frame’s expression e is reinstated, and

the frame’s environment ρκ is also reinstated after being extended with a binding for x to the

return value clov. If a return point is reached on an empty stack, no successor is produced

and evaluation halts.

Figure 2.4 shows a small-step interpreter for ANF written in Racket. Instead of explicitly

passing a continuation along as a user lambda due to CPS conversion, this interpreter passes

a continuation along as a distinguished top-level component of machine states. This requires

us to do the work of specifically managing stack pushes and stack pops, but it also gives us

(define (eval e [rho (hash)] [kappa ’()])
(define (atomic-eval ae)

(match ae
[‘(lambda (,x) ,e) ‘((lambda (,x) ,e) ,rho)]
[(? symbol? x) (hash-ref rho x)]))

(match e
[‘(let ([,xlet (,aefun ,aearg)]) ,elet)
(define vfun (atomic-eval aefun))
(define varg (atomic-eval aearg))
(match vfun

[‘((lambda (,x) ,ebody) ,rho_lam)
(eval ebody

(hash-set rho_lam x varg)
(cons ‘(letk ,xlet ,elet ,rho) kappa))])]

[(or (? symbol?) ‘(lambda (,x) ,ebody))
(define retv (atomic-eval e))
(if (null? kappa)

retv
(match (car kappa)

[‘(letk ,xlet ,elet ,rho_let)
(eval elet

(hash-set rho_let xlet retv)
(cdr kappa))]))]))]))

Figure 2.4. A small-step interpreter for the direct-style, untyped λ-calculus, written in
Racket. Because an explicit stack is passed along, every call to eval is tail recursive.
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full control over how the stack is represented and manipulated.

Before formulating program evaluation as a fixed point problem, we produce a helper for

injecting a program into an initial state with an empty stack and environment:

I : ANFExp → Σ

I(e) � (e,∅, �)

We perform the standard lifting of (→CEK) to a collecting semantics defined over sets of

states.

s ∈ S � P(Σ)

As before, our collecting relation (→SCEK) is a monotonic, total function that gives a set

including the trivially reachable state I(e0) plus the set of all states immediately succeeding

those in its input.

s →SCEK s
� � s� = {ς � | ς ∈ s ∧ ς →CEK ς �} ∪ {I(e0)}

A fixed point for (→SCEK) is a (possibly infinite) set of states in Σ which contains every state

that execution passes through when evaluating e0.
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CHAPTER 3

ABSTRACTING ABSTRACT MACHINES

This chapter introduces a general approach to static analysis via abstract interpretation

of small-step abstract-machine semantics. As we saw in the previous chapters, abstract

machines are a versatile, concise, and familiar way to construct formal semantics for pro-

gramming languages that are very much like normal definitional interpreters in how they

define a process of evaluating programs step by step.

The methodology of abstracting abstract machines (AAM) encompases a variety of tools

and alternatives for turning an underlying concrete (i.e., precise) small-step abstract machine

into a static analysis by approximating or further abstracting it (Johnson et al., 2013; Might,

2010; Van Horn and Might, 2010). AAM aims to be as systematic as possible in extending the

approach of abstract interpretation to the unique challenges and opportunities of abstract

machines and functional (higher-order) languages in particular. The AAM methodology is

flexible in allowing a high degree of control over how program states are represented and is

easy to instrument and extend.

AAM provides us with the tools to abstract an abstract machine and obtain an approx-

imation of its operational behavior in a variety of styles. Importantly, one such style aims

to focus all unboundedness in a semantics on the machine’s address space. Over the next

chapters, we will extend this methodology to producing an analysis framework parameterized

by an allocation function mapping variables to abstract addresses as they are bound.

3.1 Finitizing an Abstract Machine
This section takes up the CPS abstract machine from Section 2.2.1 and discusses the

problem of finitizing its state space to obtain a computable approximation. Recall that in

CPS, every call site is in tail position and all return flow has been encoded as a call site

invoking a continuation.
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call ∈ Call ::= (ae ae . . . ) | (halt ae)

lam ∈ Lam ::= (λ (x . . . ) call)

ae ∈ AExp ::= lam | x

x ∈ Var is a set of program variables

Our small-step CE-machine is defined over control expression (in pure CPS, a call site) and

environment components.

ς ∈ Σ � Call× Env

ρ ∈ Env � Var � Clo

clo ∈ Clo � Lam× Env

For an abstract machine to implement a Turing-complete language, its state space must

be infinite. In this case, the state space Σ is infinite because closures and environments

are mutually recursive: closures contain an environment and environments map variables to

closures. In Section 2.2.1, we observed how a program like

((λ (w) (w w w)) (λ (x y) (x x (λ (z) z))))

can repeatedly extend its current environment without bound. The direct-style CEK-

machine of Section 2.2.2 exhibits both recursion between environments and closures and

recursion in its stack (a stack κ is either � or some φ :κ�).

3.1.1 A Three-Step Approach

The fundamental tool AAM proposes for producing a finite abstract semantics (one

we can connect to its concrete semantics and use to approximate program behavior as

illustrated in Chapter 1) is to “cut” each source of recursion in an abstract machine using

a store-passing-style transformation. Deploying this technique in a variety of different ways

yields a wide design space of reasonable approximations.

The process for producing an approximate abstract-machine semantics given a concrete

small-step abstract machine (such as Σ) can be systematized as three steps:

1. Each source of recursion in the machine is cut by indirecting it through a set of

addresses a ∈ Addr . In the CPS machine Σ, this gives us just two options. We can

either define closures as pairs of a syntactic lambda and a pointer to its environment,

clo ∈ Lam × Addr , or we can define environments as functions from variables to
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addresses for their respective closures. We select this latter design as it coincides

nicely with the standard store-passing style used to define stateful language features.

ς ∈ Σ � Call× Env × Store

ρ ∈ Env � Var � Addr

σ ∈ Store � Addr � Clo

clo ∈ Clo � Lam× Env

a ∈ Addr � Var × N

A store σ gets passed along in each state accumulating addresses bound to closures.

Addresses can be defined in various ways, so long as we can produce an infinite number

of them and each is fresh when allocated.
ς� �� �

((aef ae1 . . . aej), ρ,σ) →Σ (call �, ρ�,σ�),where

((λ (x0 . . . xj) call �), ρλ) = A(aef , ς)

cloi = A(aei, ς)

ρ� = ρλ[xi �→ ai]

σ� = σ[ai �→ cloi]

ai = (xi, |dom(σ)|)

Formally, each address ai is fresh iff ai /∈ dom(σ)∧ (ai = ak =⇒ i = k). A particular

strategy for allocating a fresh address is to pair the variable being allocated for with

the current number of points in the store. This both keeps addresses allocated at the

same time distinct, and addresses allocated at different times distinct.

Atomic evaluation needs the store so it can read addresses, but does not need to

produce a modified store because atomic evaluation is stateless (even in languages

supporting mutation).

A : AE× Σ � Clo

A(x, (call , ρ, σ)) � σ(ρ(x))

A(lam, (call , ρ, σ)) � (lam, ρ)

The updated store-passing-style state space Σ contains no direct recursion and is

infinite only because we allow the set of addresses to be infinite. (We are only

interested in analyses of finite programs, so while our syntactic domains are infinite
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in the general case, for a particular target program, they are each finite.) Figure 3.1

shows a dependence graph for Σ both before and after the store-passing transformation

of this step (Might, 2010).

2. The next step is to abstract our set of addresses to a finite set of abstract addresses

â ∈ �Addr = Var with a Galois connection (αAddr , γAddr) and propagate this change

up to Σ. At each step, moving from �Addr up to Σ, we compose an existing Galois

connection with a syntactic domain or another Galois connection to derive a new

Galois connection automatically (Might, 2010). In most cases, these inferred Galois

connections are quite simple. For example, we can visualize a rule for Cartesian

product:

A −−−−−→←←−−−−−
αA

γA
Â B −−−−−→←←−−−−−

αB

γB
B̂

A×B −−−−−−→←←−−−−−−
αAB

γAB
Â× B̂

And in this case, αAB(a, b) = (αA(a),αB(b)) (Nielson et al., 2004). Lifting our Galois

connection for addresses to one for environments yields a set of abstract environments

Var � �Addr . Abstract environments remain functions because only the images of

these functions need a Galois connection. In the case of the store, however, because

the domain of stores is abstract, abstract stores become relations. In the end, we obtain

a Galois connection for closures and machine states through the simple inference rule

for Cartesian products.

Figure 3.1. A dependence graph for the components of a CPS abstract machine before and
after cutting the dependency of environments on closures.



30

ς̂ ∈ Σ̂ � Call× �Env × �Store

ρ̂ ∈ �Env � Var � �Addr

σ̂ ∈ �Store � �Addr → P(�Clo)
�clo ∈ �Clo � Lam× �Env

â ∈ �Addr � Var

This compaction of the address set to ensure the finiteness of our analysis has led to

nondeterminism (i.e., relationality) in the store. Each abstract address can become

bound to more than one abstract closure (an abstract store yields flow sets) because it

must over-approximate the behavior of multiple concrete addresses (which may, during

a concrete evaluation, become bound to multiple distinct closures). Nondeterminism in

the store, in turn, leads to a further change: nondeterminism in the abstract transition

relation.

The total Galois connection produced by this process may be defined:

αΣ((e, ρ, σ)) � (e, αEnv (ρ), αStore(σ))

αEnv (ρ) � {(x, αAddr (a)) | (x, a) ∈ ρ}

αStore(σ) �
�

(a,clo)∈σ
[αAddr (a) �→ {αClo(clo)}]

αClo((lam, ρ)) � (lam, αEnv (ρ))

αAddr ((x, n)) � x

3. So far, this systematic process of abstracting an abstract machine yields abstract

domains, but not an abstract transition relation. To produce a relation (�∧

Σ
) ⊆ Σ̂× Σ̂

between abstract states, we have two options: calculate it or justify it.

Our Galois connection for states represents a notion of simulation which any

acceptable (�∧

Σ
) must respect to soundly approximate (→Σ). It also implies many

different analyses which are sound with respect to it (precise or not). For example, an

abstract transition relation which yields the entire abstract state space at every step

is trivial and fully imprecise, but still sound with respect to (→Σ) and αΣ. We may

produce a definition for (�∧

Σ
) that we would prefer to implement, and then justify it

as sound by showing that (simulation is preserved across every transition)

ς →Σ ς
� ∧ αΣ(ς) � ς̂ =⇒ ∃ς̂ �. ς̂ �∧

Σ
ς̂ � ∧ αΣ(ς

�) � ς̂ �,

or we may directly calculate the most precise abstract transition relation that is sound.

Cousot and Cousot (1979) gives a method for directly calculating the optimal analysis
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provided a Galois connection. The most precise analysis is one which behaves the same

as concretizing, then applying the concrete semantics, and then abstracting again.

In the case of our CPS analysis, the abstract transition relation may be defined:

ς̂� �� �
((aef ae1 . . . aej), ρ̂, σ̂) �∧

Σ
(call �, ρ̂�, σ̂�),where

((λ (x0 . . . xj) call �), ρ̂λ) ∈ Â(aef , ς̂)

�cloi = Â(aei, ς̂)

ρ̂� = ρ̂λ[xi �→ âi]

σ̂� = σ̂ � [âi �→ �cloi]

âi = xi

And its abstract atomic evaluator is defined:

Â : AE× Σ̂ � P(�Clo)

Â(x, (call , ρ̂, σ̂)) � σ̂(ρ̂(x))

Â(lam, (call , ρ̂, σ̂)) � {(lam, ρ̂)}

A weak update is performed on the store instead which results in the least upper

bound of the existing store and each new binding. Join on abstract stores distributes

point-wise:

σ̂ � σ̂� � λâ. σ̂(â) ∪ σ̂�(â)

Unless it is desirable, and provably safe to do so (Might and Shivers, 2006), we never

remove closures already seen. Instead, we strictly accumulate every closure bound

to each â (i.e., abstract closures which simulate closures bound to addresses which â

simulates) over the lifetime of the program. A flow set for an address â indicates a

range of values which over-approximates all possible concrete values that can flow to

any concrete address approximated by â. For example, if a concrete machine binds

(y, 345) �→ clo1 and (y, 903) �→ clo2, its approximation might bind y �→ {�clo1, �clo2}.
Precision is lost for (y, 345) both because its value has been merged with �clo2, and

because the environments for �clo1 and �clo2 in-turn generalize over many possible

addresses for their free variables (the environment in �clo1 is less precise than the

environment in clo1).
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3.1.2 Approximation of Fixed Points

To fully evaluate a program call0 using these concrete transition rules, we inject it into

our state space using a helper I : Call → Σ:

I(call) � (call ,∅,∅)

Likewise, to perform a full analysis of a program call 0 using the abstract transition rules,

we inject it into our state space using a helper Î : Call → Σ̂:

Î(call) � (call ,∅,⊥)

As abstraction has turned the store into a total function that yields sets (i.e., a relation),

its initial value is the function which yields an empty set for every input, ⊥.

We may now perform a lifting of (→Σ) and (�∧

Σ
) to their collecting semantics defined

over sets of states: (→S) and (�∧

S
).

s ∈ S � P(Σ) ŝ ∈ Ŝ � P(Σ̂)

αS(s) � {αΣ(ς) | ς ∈ s}

Such semantics strictly accumulates reachable states, instead of progressing from one state

to another, collecting the information created over a program’s evaluation. By phrasing

concrete evaluation as a fixed-point problem, we can identify a specific incomputable value

to approximate for even a nonterminating program (Tarski, 1955). Each collecting relation

is a monotonic, total function that gives a set including the trivially reachable state (I(call 0)
or Î(call0)) plus the set of all states immediately succeeding those in its input.

s →S s
� � s� = {ς � | ς ∈ s ∧ ς →Σ ς

�} ∪ {I(call0)}

ŝ �∧

S
ŝ� � ŝ� = {ς̂ � | ς̂ ∈ ŝ ∧ ς̂ �∧

Σ
ς̂ �} ∪ {Î(call0)}

If the program call0 terminates, iteration of (→S) from ⊥ (i.e., the empty set ∅) does as

well. That is, (→S)
n(⊥) is a fixed point containing call0’s full program trace for some n ∈ N

whenever call0 is a terminating program. No such n is guaranteed to exist in the general case

(when call0 is a nonterminating program) as our language is Turing-equivalent; however, an

abstract interpretation will allow us to approximate even an incomputable infinite set of

states. Because (�∧

Σ
) soundly simulates (→Σ), with respect to αΣ, and (Σ̂) is finite, we know

that for some n ∈ N, the value (�∧

S
)n(⊥) is an approximation of the least fixed point of

(→S), though itself is incomputable.



33

3.2 A Priori Soundness
This section gives a proof that (�∧

Σ
) soundly simulates (→Σ) with respect to αΣ. Nor-

mally, this is called an a posteriori justification of an abstract interpretation to contrast it

with the calculational approach where the most precise interpretation which respects the

given Galois connection is directly calculated. Although this justification of soundness takes

place after construction of both an abstraction map and abstract interpretation, it takes

place before any analysis is actually run. We will refer to the present justification process

as a priori, in this sense, to contrast it with Section 4.3 where we will look at a method for

proving whole classes of analyses sound by using an abstraction map which cannot be fully

constructed until after the analysis is actually run.

Theorem 1. (Simulation across transition) If a transition ς →Σ ς
� is legal and ς̂ simulates

ς, then there must exist a legal transition ς̂ �∧

Σ
ς̂ � where ς̂ � simulates ς �.

ς →Σ ς
� ∧ αΣ(ς) � ς̂ =⇒ ∃ς̂ �. ς̂ �∧

Σ
ς̂ � ∧ αΣ(ς

�) � ς̂ �,

Proof. We expand the definition of our assumed antecedent transition:

ς� �� �
((aef ae1 . . . aej), ρ,σ) →Σ

ς�� �� �
(call �, ρ�,σ�),where

((λ (x0 . . . xj) call �), ρλ) = A(aef , ς)

cloi = A(aei, ς)

ρ� = ρλ[xi �→ ai]

σ� = σ[ai �→ cloi]

ai = (xi, |dom(σ)|)

and we assume ς̂ simulates ς:

αΣ

ς� �� �
((aef ae1 . . . aej), ρ, σ) �

ς̂� �� �
((aef ae1 . . . aej), ρ̂, σ̂)

αEnv(ρ) � ρ̂

αStore(σ) � σ̂

We will show that a transition ς̂ �∧

Σ
ς̂ � is legal such that αΣ(ς

�) � ς̂ �.
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ς̂� �� �
((aef ae1 . . . aej), ρ̂, σ̂) �∧

Σ
(call �, ρ̂�, σ̂�),where

((λ (x0 . . . xj) call �), ρ̂λ) ∈ Â(aef , ς̂)

�cloi = Â(aei, ς̂)

ρ̂� = ρ̂λ[xi �→ âi]

σ̂� = σ̂ � [âi �→ �cloi]

âi = xi

We can break this down into showing several simpler properties:

{αClo(A(ae, ς))} � Â(ae, ς̂) (Property 1)

αAddr(ai) = âi (Property 2)

αEnv(ρ
�) � ρ̂� (Property 3)

αStore(σ
�) � σ̂� (Property 4)

Property (1) shows the abstract atomic-expression evaluator to be a sound simulation of

the concrete atomic-expression evaluator. From this, it follows that a transition ς̂ �∧

Σ
ς̂ � is

legal such that αEnv(ρλ) � ρ̂λ. Properties (3) and (4) rely on (1,2) and complete the task

of showing that αΣ(ς
�) � ς̂ �.

Property 1. For all ae, we assume ae ∈ dom(ρ)∨ ae ∈ Lam by the lexical safety of the

concrete machine (not shown; see Might, 2007) and break into these two cases for showing

that {αClo(A(ae, ς))} � Â(ae, ς̂):

{αClo(A(ae,

ς� �� �
(e, ρ, σ)))} = {αClo((ae, ρ))} (Assume ae ∈ Lam)

� {(ae, ρ̂)} (αClo and αEnv(ρ) � ρ̂)

= Â(ae, ς̂)

{αClo(A(ae,

ς� �� �
(e, ρ, σ)))} = {αClo(σ(ρ(ae)))} (Assume ae ∈ dom(ρ))

� αStore(σ)(αAddr(ρ(ae))) (αStore)

� σ̂(αAddr(ρ(ae))) (αStore(σ) � σ̂)

= σ̂(αEnv(ρ)(ae)) (αEnv)

� σ̂(ρ̂(ae)) (αEnv(ρ) � ρ̂)

= Â(ae, ς̂)
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Property 2. For all ai, we show that αAddr(ai) = âi:

αAddr(ai) = αAddr(xi, ς) (ai = (xi, |dom(σ)|))

= xi (αAddr)

= âi (âi = xi)

Property 3. We show that αEnv(ρ
�) � ρ̂�:

αEnv(ρ
�) = αEnv(ρλ[xi �→ ai]) (ρ� = ρλ[xi �→ ai])

� ρ̂λ[xi �→ αAddr(ai)] (αEnv and αEnv(ρλ) � ρ̂λ)

= ρ̂λ[xi �→ âi] (Property 2 )

= ρ̂�

Property 4. We show that αStore(σ
�) � σ̂�:

αStore(σ
�) = αStore(σ[ai �→ A(aei, ς)]) (σ� = σ[ai �→ A(aei, ς)])

� αStore(σ) � αStore([ai �→ A(aei, ς)]) (αStore)

� σ̂ � αStore([ai �→ A(aei, ς)]) (αStore(σ) � σ̂)

= σ̂ � [αAddr(ai) �→ {αClo(A(aei, ς))}] (αStore)

� σ̂ � [αAddr(ai) �→ Â(aei, ς̂))] (Property 1 )

= σ̂ � [âi �→ Â(aei, ς̂))] (Property 2 )

= σ̂�

The soundness of (�∧

Σ
), with respect to (→Σ) and αΣ, is preserved across transition.

3.3 1-CFA
The analysis just produced is sound, but highly approximate. It is monovariant (a closely

related term is context insensitive) which means each syntactic variable or intermediate

expression we track during analysis recieves only a single flow set to over-approximate all

its possible values. A more polyvariant analysis, by contrast, would differentiate a larger

number of distinctly tracked approximations.

A simple example of a polyvariant strategy for analysis is call sensitivity, a form of

context sensitivity which differentiates values based on a history of call sites that execution

recently passed through. k-CFA, a classic framework for analysis of functional languages,

uses call sensitivity to keep values separate and is parameterized by a number k ∈ N which

specifies how many previous call sites to remember when producing new flow sets. We could
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modify our analysis to instantiate 1-CFA by making two small changes. First, we modify

the domain for abstract addresses so that each is the pair of a variable and the last call site

execution passed through:

â ∈ �Addr1CFA � Var × Call

Second, we modify a single proposition defining our abstract transition relation to produce

addresses unique to both the variable being allocated for and the most recent call site. Only

our proposition constraining each âi needs to be changed:

âi = (xi, (aef ae1 . . . aej))

These changes can cause the analysis to allocate a much larger number of abstract addresses

and abstract environments, permitting both an increase in precision and analysis complexity.

An equivalence relation on these addresses may be lifted from a notion of equality for

syntax; however, we must either affix unique labels to every program expression or assume

that two identical pieces of syntax found in the same program are syntactically unequal. For

simplicity, we assume the latter.

Tuning our abstract semantics to instantiate 2-CFA or another more context-sensitive

(and more polyvariant) analysis style requires further instrumentation; unless we require

our analysis to remember the penultimate call site as well, we cannot use it to further

differentiate abstract addresses. Chapter 4 proposes a more principaled approach to tuning

a CFA to any conceivable style of polyvariance.

3.4 A Posteriori Soundness
The usual process for proving the soundness of an abstract interpretation is a priori in

the sense that it may be performed entirely before an analysis is executed. By contrast,

Might and Manolios (2009) describes an a posteriori soundness proof where the abstraction

map cannot be fully constructed until after analysis. This approach factors each α to

separate the abstraction of addresses αAddr , producing a family of parametric maps β such

that β(αAddr ) = α. The authors show that in a “nondeterministic abstract interpretation”,

regardless of the allocation strategy taken during analysis, a consistent abstraction map may

be constructed a posteriori which justifies each choice of abstract address whatever it may

have been.

What is special about the allocation of abstract addresses which could make even a

random number generator a sound choice of allocator? Clearly we could not define the

operation of most other components of our abstract machine randomly and still guarentee
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a sound analysis. Intuitively, it is because in a concrete evaluation of any program, we

may select a fresh and unique address for every new allocation. (In fact, we might justify a

garbage collection algorithm as safe by showing that when an address becomes unreachable,

it may be reclaimed and the semantics are guarenteed to remain equivalent to allocating a

fresh address.) Whatever the behavior of abstract address allocation, no inconsistency may

arise in the αAddr it induces because of just this property. No concrete address may become

abstracted to two different abstract addresses because no concrete address is allocated more

than once.

If a concrete machine and its abstract machine are simulated in lock-step, each concrete

address a and corresponding abstract address â represent a point [a �→ â] in the abstraction

map αAddr . For the abstraction induced by the pairing of a concrete allocator and abstract

allocator to be inconsistent, the same concrete address would need to be abstracted to

two different abstract addresses. Because a concrete allocator must, by definition, produce

a fresh address for every invocation, no such inconsistency is possible, regardless of the

abstract allocator chosen. This makes abstract allocation a tunable analysis parameter with

the unique property that every possible tuning results in a sound analysis.

3.4.1 Policy-Factored Semantics

Each transition accepts an allocator (used only for that transition) which maps variables

to addresses.

fΣ : Σ → (Var → Addr) � Σ

fΣ ((aef ae1 . . . aej), ρ, σ)� �� �
ς

(allocπ) = (e, ρ�, σ�)

where ((λ (x1 . . . xj) e) ρλ) = A(aef , ς)

ρ� = ρλ[xi �→ ai]

σ� = σ[ai �→ A(aei, ς)]

ai = allocπ(xi)

The concrete allocation policy π produces a per-transition allocator given a concrete state.

π : Σ → Var → Addr

π(ς)(x) = (x, ς)

We should note the correspondence with our original (unfactored) semantics:

ς ⇒ ς � ⇐⇒ fΣ(ς)(π(ς)) = ς �
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Each transition accepts an abstract allocator mapping variables to abstract addresses. The

local function �fin builds a state-finalizer for a given closure.

f̂Σ : Σ̂ → P((Var → �Addr) → Σ̂)

f̂Σ ((aef ae1 . . . aej), ρ̂, σ̂)� �� �
ς̂

= {�fin(�clo) | ((λ (x1 . . . xj) e), ρ̂λ)� �� �
�clo

∈ Â(aef , ς̂)}

�fin : �Clo → (Var → �Addr) → Σ̂

�fin((λ (x1 . . . xj) e), ρ̂λ)(�allocπ) = (e, ρ̂�, σ̂�)

where ρ̂� = ρ̂λ[xi �→ âi]

σ̂� = σ̂ � [âi �→ Â(aei, ς̂)]

âi = �allocπ(xi)

An abstract allocation policy π̂ for 1-CFA produces these per-transition allocators given an

abstract state.

π̂ : Σ̂ → (Var → �Addr)

π̂((ae . . . ), ρ̂, σ̂)(x) = (x, (ae . . . ))

We should again observe the correspondence with our original (unfactored) abstract seman-

tics:

ς̂ �∧

Σ
ς̂ � ⇐⇒ ∃ĥ ∈ f̂Σ(ς̂) : ĥ(π̂(ς̂)) = ς̂ �

3.4.2 Policy-Factored Galois Connection

We produce a family of policy-factored abstraction maps β which are identical to the

original definition for α except parameterized by an abstraction map for addresses.

βΣ(αAddr)(e, ρ, σ) = (e, βEnv(αAddr)(ρ), βStore(αAddr)(σ))

βEnv(αAddr)(ρ) = {(x, αAddr(a)) | (x, a) ∈ ρ}

βStore(αAddr)(σ) =
�

(a,clo)∈σ
[αAddr(a) �→ {βClo(αAddr)(clo)}]

βClo(αAddr)(lam, ρ) = (lam, βEnv(αAddr)(ρ))

Yet again we should note the correspondence αΣ = βΣ(αAddr), i.e.:

αΣ(ς) = ς̂ ⇐⇒ βΣ(αAddr)(ς) = ς̂

For a given αAddr, π, and π̂, showing that f̂ simulates f under the abstraction β(αAddr)

reduces to an inductive step for concrete transitions f(ς)(π(ς)):

βΣ(αAddr)(ς) � ς̂ =⇒ ∃ĥ ∈ f̂(ς̂) : β(αAddr)(f(ς)(π(ς))) � ĥ(π̂(ς̂))
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3.4.3 A Dependent Simulation Condition

A policy-factored abstract transfer function f̂ is a dependent simulation of a factored

concrete transfer function f under a factored abstraction map β iff:

For all abstraction maps αAddr : Addr → �Addr, concrete transition-allocators allocπ :

Var → Addr, abstract transition-allocators �allocπ : Var → �Addr, and variables x ∈ Var:

βΣ(αAddr)(ς) � ς̂ =⇒

∃ĥ ∈ f̂(ς̂) : β(αAddr[allocπ(x) �→ �allocπ(x)])(f(ς)(allocπ)) � ĥ(�allocπ)

3.4.4 A Posteriori Construction of αAddr

Now we can show that even a nondeterministic choice of allocator is sound. We fix an

arbitrary allocation policy π̂ and run the analysis, producing a closed abstract transition

graph (Ŝ,�). If the policy-factored analysis satisfies the dependent simulation condition,

we can show after-the-fact that an αAddr exists which justifies whatever π̂ we had chosen.

Theorem 2. (A posteriori soundness) Assuming:

– ς = �ς0, ς1 . . .� and alloc = �alloc0, alloc1, . . .� is a concrete execution such that

fΣ(ςi)(alloci) = ςi+1.

– f̂Σ is a dependent simulation of fΣ.

– (Ŝ,�) is a closed abstract transition graph for f̂Σ where ς̂0 ∈ Ŝ.

– For all αAddr, β(αAddr)(ς0) � ς̂0.

Then, there exists a map αAddr : Addr → �Addr such that the graph (Ŝ,≈>) is a sound

simulation of ς under the abstraction map β(αAddr).

Proof. We proceed by construction of αAddr. To do this, we define a sequence of abstract

states ς̂ = �ς̂0, ς̂1, . . .�, abstract transition-alloctors �alloc = ��alloc0, �alloc1, . . .� where

ς̂i ∈ Ŝ and f̂Σ(ς̂i)(�alloci) = ˆςi+1. Along the way, we build a sequence of partial abstration

maps α = �α0, α1, . . .� and show by induction that β(αi)(ςi) = ς̂i. We may start with

α0 = λa.⊥.

The dependent simulation condition directly states there must exist an �alloci and ς̂i+1

such that f̂Σ(ς̂i)(�alloci) = ς̂i+1 and β(αi+1)(ςi+1) � ς̂i+1 where we construct the next

abstraction map αi+1 = αi[alloci(x) �→ �alloci(x)], updating it with a new binding for all

addresses produced by alloci.
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3.5 Store Widening
Various forms of widening and further approximations may be layered on top of the

naïve analysis (�∧

S
). One such approximation is store widening, which is necessary for our

analysis to be polynomial-time in the size of the program. To see why store widening is

so important, let us consider the complexity of an analysis using (�∧

S
). The height of the

power-set lattice (Ŝ,∪,∩) is the number of elements in Σ̂ which is the product of call sites,

environments, and stores. A standard worklist algorithm at most does work proportional

to the number of states it can discover (Might et al., 2010). Even in the monovariant case,

analysis run-time is thus in:

O(

|Call|×|�Env |����
n ×

|�Store|����
2n

2
)

The number of syntactic points in an input program is in O(n). In the monovariant case,

environments map variables to themselves and are isomorphic to the sets of free variables

that may be determined for each syntactic point. The number of addresses produced by

our monovariant analysis is in O(n) as these are either syntactic variables or expressions.

The number of value stores may be visualized as a table of possible mappings from every

address to every abstract closure—each may be included in a given store or not as seen in

Figure 3.2. The number of abstract closures is in O(n) because lambdas uniquely determine a

monovariant environment. (The same is true of call sites and their monovariant environments

within states ς̂.) This times the number of addresses gives O(n2) possible additions to the

value store.

The crux of the issue is that, in exploring a naïve state-space (where each state is

specific to a whole store), we may explore both sides of every diamond in the store lattice.

All combinations of possible bindings in a store may need to be explored, including every

alternate path up the store lattice. For example, along one explored path, we might

extend an address â1 with �clo1 before extending it with �clo2, and along another path,

we might add these closures in the reverse order (i.e., �clo2 before �clo1). We might also

extend another address â2 with �clo1 either before or after either of these cases, and so forth.

This potential for exponential blow-up is unavoidable without further widening or coarser

structural abstraction.

Global-store widening is an essential technique for combating exponential blow up. This

lifts the store alongside a set of reachable states instead of nesting them inside states ς̂. To

formalize this, we define new widened state spaces that pair a set of reachable configurations

(states sans stores) with a single, global value store we maintain as the least upper bound of
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O(n)





O(n)� �� �



�clo0 �clo1 ··· �cloi ···
â0 0 0 · · · 0 · · ·
â1 0 0 · · · 1 · · ·
...

...
...

. . .
...

...
âj 1 0 · · · 1 · · ·
...

...
...

...
...

. . .




Figure 3.2. The value space of stores.

all stores we encounter during analysis. Instead of accumulating whole stores, and thereby

all possible sequences of additions within such stores, the analysis strictly accumulates new

values in the store in the same way (�∧

S
) accumulates reachable states in a collection ŝ:

ξ̂ ∈ Ξ̂ � R̂× �Store [state-spaces]

r̂ ∈ R̂ � P(Ĉ) [reachable configurations]

ĉ ∈ Ĉ � Call× �Env [configurations]

A widened transfer function (�∧

Ξ
) may then be defined that, like (�∧

S
), is a monotonic, total

function we may iterate to a fixed point.

(�∧

Ξ
) : Ξ̂ → Ξ̂

This may be defined in terms of (�∧

Σ
), as was (�∧

S
), by transitioning each reachable con-

figuration using the global store to yield a new set of reachable configurations and a set of

stores whose least upper bound is the new global store:

(r̂, σ̂) �∧

Ξ
(r̂�, σ̂�), where

ŝ = {ς̂ | (call , ρ̂) ∈ r̂ ∧ (call , ρ̂, σ̂) �∧

Σ
ς̂} ∪ {Î(call0)}

r̂� = {(call , ρ̂) | (call , ρ̂, σ̂) ∈ ŝ}

σ̂� =
�

(_,_,σ̂��)∈ŝ
σ̂��

In this definition, an underscore (wildcard) matches anything. The height of the R̂ lattice is

linear (as environments are monovariant) and the height of the store lattices are quadratic

(as each global store is strictly extended). Each extension of the store may require O(n)

transitions because at any given store, we must transition every configuration to be sure
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to obtain any changes to the store or otherwise reach a fixed point. A traditional worklist

algorithm for computing a fixed point is thus cubic:

O(

|Ĉ|����
n ×

|�Store|����
n2 )

Using advanced bit-packing techniques (Midtgaard, 2012), the best known algorithm for

global-store-widened 0-CFA is in O( n3

logn).



CHAPTER 4

A PARAMETRIC SEMANTICS FOR

POLYVARIANCE

In the past 35 years since call-sensitive data-flow analysis was introduced by Sharir and

Pnueli (1981), a wide variety of both subtly and essentially distinct forms of polyvariant

static analysis have been explored in the literature. The polyvariance of a static analysis,

broadly construed, is the degree to which program values at runtime are broken into a

multiplicity of distinct static approximations of their dynamic behavior. This is consistent

with previous uses of the term, although the exact nature of its broad diversity of uses has

not previously been well explored or formalized for any particular methodology.

For example, consider a function applied on different values across more than one call

site—an identity function applied on both true and false in Racket (Racket Community,

2015):

... 0(let ([id (lambda (x) x)])
1(id #f)
2(id #t))

A monovariant analysis is one which maintains only a single structurally distinct approx-

imation, a single variant, or a single flow set (in the nomenclature of flow analysis) that

over-approximates the behavior of all possible values for each syntactic variable or inter-

mediate expression. Although the variable x may become bound to #f when called from

e1 (i.e., the first call site, 1(id #f)) and #t when called from e2 (i.e., the second call site,
2(id #t)), a monovariant analysis will merge these values and produce only a single flow

set {#t, #f} for x (or perhaps {bool}, �, etc., depending on the representation of abstract

values and widening used).

A more polyvariant analysis, by contrast, would allow for a larger number of distinct flow

sets, a choice which has the potential to increase analysis complexity, analysis precision, or

both, depending on the target of analysis. The seminal and still most widely used form of
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polyvariance, k-call sensitivity, distinguishes one context for each call trace or call history of

length k that precedes a syntactic binding site. In our example above, even a 1-call sensitive

analysis (e.g., Shivers’ 1-CFA) would be enough to keep the values #t and #f from merging

in a single flow set for x. A 1-call sensitive analysis produces two distinct flow sets for x in

this program. One is unique to both x and the first call site e1, the other is unique to both

x and the second call site e2.

A wide gamut of polyvariant techniques has been discussed in the literature (Age-

sen, 1995; Amtoft and Turbak, 2000; Banerjee, 1997; Bravenboer and Smaragdakis, 2009;

Gilray and Might, 2013a,b; Gilray et al., 2016; Harrison, 1989; Holdermans and Hage,

2010; Jagannathan et al., 1997; Jones and Muchnick, 1982; Koot and Hage, 2015; Lhoták,

2006; Lhoták and Hendren, 2006, 2008; Liang et al., 2005; Milanova et al., 2005; Naik

et al., 2006; Oxhøj et al., 1992; Palsberg and Pavlopoulou, 2001; Sharir and Pnueli, 1981;

Shivers, 1991; Smaragdakis et al., 2011; Verstoep and Hage, 2015; Wright and Jagannathan,

1998), comprised of both subtle variations and completely disparate strategies from methods

and applications like type systems, abstract interpretations, and constraint-based analyses.

While many of these designs and presentations share elements in common, each was designed

and implemented separately with rather little work focused on unifying or connecting dis-

tinct implementations and strategies (Amtoft and Turbak, 2000; Gilray and Might, 2013a;

Smaragdakis et al., 2011).

We present a new methodology which both unifies and generalizes the myriad strategies

for polyvariance as tunings of a single function, an abstract allocator. We show that the

design space of polyvariance uniquely and exactly corresponds to the design space of tunings

for this function and that no possible tuning can lead to an unsound analysis. All classic

flavors of polyvariance can be easily recapitulated using our methodology and we are able

to derive novel variations by generalizing each. By proving that no tuning of allocation

is unsound, and by permitting arbitrary instrumentation of a core flow analysis to guide

the behavior of this function, we are able to show that all conceivable sound strategies for

polyvariance may be implemented in a parametric abstract semantics.

4.1 Myriad Styles of Polyvariance
Following Sharir and Pnueli (1981), call sensitivity was used by Jones, Muchnick, and

Harrison in the ‘80s and then generalized to control-flow analysis of higher-order languages

(k-CFA) by Shivers (Harrison, 1989; Jones and Muchnick, 1982; Shivers, 1991). The ‘90s saw

a broader exploration of different strategies for polyvariance, including a polynomial-time
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approximation for call-sensitive higher-order flow analysis by Jagannathan and Weeks (1995)

and the Cartesian product algorithm (CPA) of Agesen (1995), an enhancement for type

recovery algorithms. A variety of polyvariant type systems emerged, the preponderance of

which are call sensitive (Amtoft and Turbak, 2000; Banerjee, 1997; Holdermans and Hage,

2010; Koot and Hage, 2015; Oxhøj et al., 1992; Palsberg and Pavlopoulou, 2001; Verstoep

and Hage, 2015). Ideas from type systems also found their way back into flow analyses

Amtoft and Turbak (2000); Cousot (1997); for example, inspired by let-polymorphism,

Wright and Jagannathan (1998) present polymorphic splitting, a style of call sensitivity

that varies the degree of sensitivity on a per-function basis using the let-depth of each

function as its heuristic. Milanova et al. (2005) introduce another very different style of

polyvariance, object sensitivity, which uses a history of the allocation points of objects to

differentiate program contexts. Like call sensitivity, object sensitivity forms a well-ordered

design space of increasingly precise analyses that may reach concrete (precise) evaluation

only in its limit. Growing evidence (particularly for points-to analysis of Java) supports the

idea that object-sensitive analyses tend to be more effective and efficient than call-sensitive

ones for object-oriented targets (Bravenboer and Smaragdakis, 2009; Lhoták, 2006; Lhoták

and Hendren, 2006, 2008; Liang et al., 2005; Naik et al., 2006). Recently, Smaragdakis et al.

(2011) have generalized object sensitivity to a wider range of variations and introduced a

new approximation of these called type sensitivity.

Different styles of polyvariance may be viewed as different heuristics for managing the

trade-off between complexity and precision in a static analysis. Call sensitivity supposes

that program values will tend to correlate with recent call sites (or the surrounding few

stack frames) and allows for more complexity in a way which is capable of expressing these

correlations. For targets where this is a good heuristic, a greater number of more precise

flow sets will result. For targets where it is not, a greater number of equally imprecise

flow sets may result. Object sensitivity supposes that program values will tend to correlate

with the allocation point of a function’s receiving object (and the allocation point of its

allocating object in turn, and so forth). The Cartesian product algorithm supposes that

program values for one argument to a function will correlate with program values for other

arguments to the same function. Polymorphic splitting supposes that more deeply nested

function definitions will benefit from a greater degree of call history than less deeply nested

definitions. Each strategy for polyvariance represents a gambit on the part of an analysis

designer that targets of the analysis will tend to behave in a certain way.
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4.1.1 Toward Better Trade-offs

To further illustrate this point, consider a max function:

... 0(let ([max (lambda (a b) (if (> a b) a b))])
1(max 0 1)
2(max ‘‘a’’ ‘‘at’’))

As before, a 1-call sensitive analysis will be precise enough to keep the values 0 and “a” from

merging; however, if max is η-expanded k times, a k-call sensitive analysis will not be enough

to keep the approximation for a’s behavior from becoming {int, string} (in the case of a

type recovery, or {0, “a”} for a constant propagation). In a sense, this is not imprecise be-

cause neither of these are spurious values for a. Even from this context-agnostic perspective,

however, spurious interargument patterns are being implied between the approximations for

a and b. It appears that max could be invoked on both an integer and a string at the same

time. To eliminate this kind of imprecision, the Cartesian product algorithm builds up

whole tuples of arguments for each function, preserving these interargument patterns and

eliminating the possibility of calls like (max “a” 1). For the function max, CPA has the same

complexity as k-CFA but yields significantly greater precision. For a different function, one

where all such interargument combinations are possible, CPA will exhaustively enumerate

all combinations at great expense, while k-CFA implies them at no additional cost. For

different targets of analysis, or even different portions of the same target of analysis, different

styles of polyvariance can exhibit very different efficacies in yielding degrees of precision (or

efficiencies at yielding the same degree of precision).

Similar trade-offs can be described for other forms of polyvariance and each further

intersects with the well-known paradox of flow analysis that greater precision can, in practice,

lead to smaller model sizes and faster runtimes (Wright and Jagannathan, 1998). While

establishing better guarantees of analysis efficiency does correlate inversely with guarantees

of analysis precision in absolute terms, analyses with more precise information for data flows

will often have more precise control flows and explore a smaller overall model. Scaling poly-

variant flow analysis to larger programs written in dynamic languages like Racket/Scheme,

Python, or JavaScript, hinges on being able to reliably make good trade-offs and exploit this

paradox; otherwise, the global use of polyvariance (for nearly all the varieties mentioned)

yields an exponential-time analysis in the worst case due to the structure of environments

in a higher-order setting (Might et al., 2010; Van Horn and Mairson, 2008). (The exception

among the techniques mentioned is the poly-k-CFA of Jagannathan and Weeks (1995) which

effectively uses flat environments.)
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Much work has gone into simply defining a correct semantics for Python and JavaScript

(Guth, 2013; Ranson et al., 2008; Smeding, 2009), with perhaps the most compelling effort

(at least, for the purposes of constructing a static analysis) being that of the λJS of Guha

et al. (2010) and of its successor, the λS5 of Politz et al. (2012). This approach reduces

programs to a simple core language consisting of fewer than 35 syntactic forms, reifying

the hidden and implicit complexity of full JavaScript as explicit complexity written in the

core language. Desugaring is appealing for analysis designers as it gives a simple and precise

semantics to abstract; however, it also presents one of the major obstacles to precise analysis

as it adds a significant runtime environment and layers of indirection through it. Consider

an example the authors of λS5 use to motivate the need for their carefully constructed

semantics: [] + {} yields the string “[object Object]”. Strangely enough, this behavior

is correct as defined by the ECMAScript specification for addition—a complex algorithm

encompassing a number of special cases which can interact in unexpected ways ECMA

(2011). The desugaring process for λS5 replaces addition with a function call to %PrimAdd

from the runtime environment. %PrimAdd in-turn calls %ToPrimitive on both its arguments

before breaking into cases. This means that for any uses of addition to return precise results,

or likely anything other than �, a k-call-sensitive analysis requires an intractable k ≥ 2.

One potential solution might be to use the flat environments of poly-k-CFA or the

mCFA of Might et al. (2010); however, in the case of a language like Racket or Scheme,

the frequent idiomatic use of higher-order functions could make this impractical for getting

needed precision in the structure of environments. What seems to be needed are increas-

ingly nuanced, introspective, and adaptive forms of polyvariance which better suit their

targets and the properties we may wish to prove or discover for them. For example, a

recent development shows that the polyvariance of continuations can be adapted in a way

which guarantees perfect stack precision (i.e., the perfect return flows of Vardoulakis and

Shivers (2010), Earl et al. (2010), Earl et al. (2012), and Johnson and Van Horn (2014))

at no asymptotic complexity overhead Gilray et al. (2016), a quite ideal trade-off between

complexity and precision obtained through a subtle refinement of the polyvariance used.

The direction of research in this area and the challenges of precisely modeling dynamic

higher-order programming languages suggests an important development would be an easy

way to adjust the polyvariance of a flow analysis (in theory and in practical implementations)

that is both always safe and fully general.
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4.1.2 The Big Picture

We develop a unified approach to encoding all and only sound forms of polyvariance, as

tunings of an allocation function. We show that the design space of polyvariance uniquely

and exactly circumscribes the design space of tunings for this function and that no possible

allocation strategy can lead to an unsound analysis. This leads us to the main idea of

this paper: allocation characterizes polyvariance. All classic flavors of polyvariance can

be easily recapitulated using our methodology and we are able to derive novel variations

by generalizing each. Furthermore, all possible variations on allocation yield a sound

polyvariant analysis.

There are thus two directions to consider: that every allocation strategy gives rise to a

sound polyvariant analysis, and that every sound polyvariant analysis can be implemented

by an allocation strategy. We employ the a posteriori soundness process of Might and

Manolios (2009) to show that every allocator results in a sound analysis. This means

we may instrument our core flow analysis arbitrarily to guide the allocator and so long

as this extension to our analysis only impacts the store through the narrow interface of

allocation, no instrumentation may lead to an unsound flow analysis. Furthermore, every

form of polyvariance is expressible through this interface and we may express any allocation

behavior by permitting any instrumentation. All forms of polyvariance are ways of merging

and differentiating flow sets. In a store-passing-style interpreter, this is determined by the

addresses we allocate.

In Figure 4.1, we summarize a selection of the styles of polyvariance we survey in

Section 4.6. For each of these, classic styles of polyvariance and novel variations, there

is a pair of an allocation function and an instrumentation that encodes it. For example, the

instrumentation for k-call sensitivity adds tracking of k-length call histories to the analysis

so that a call-sensitive allocator may produce addresses unique to both the syntactic variable

being allocated for and the current approximate calling context.

4.2 Allocation as a Tunable Parameter
In the previous chapter, we systematically developed a global-store-widened analysis of

CPS λ-calculus based on a concrete abstract-machine semantics. It is a monovariant analysis

which means each syntactic variable or intermediate expression we track during analysis

receives exactly one flow set to over-approximate all its possible values. A closely related

term is context insensitive, which means insensitive to any form of context and is a broader

term that may, for example, include analyses less precise than this as well. In Section 3.1.1,
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the crucial propositional statement (among those defining our abstract transition relation

(�∧

Σ
)) which made the analysis monovariant was this one:

âi = xi

For each allocation, an address is produced which is unique only to the syntactic variable

being allocated for.

The goal of this section will be to produce a parametric semantics which may be tuned

by an allocator �alloc that only varies this aspect of the analysis, but may do so without

restriction. Although we will formalize this parametric semantics on its own, in the context

of our (�∧

S
)-analysis, the primary change looks like:

âi = �alloc(xi, ς̂)

This would allow us to define monovariance as a tuning of this function:

�alloc0CFA(x, ς̃) � x

An equivalence relation on these addresses may be lifted from a notion of equality for

syntax; however, we must either affix unique labels to every program expression or assume

that two identical pieces of syntax found in the same program are syntactically unequal. For

simplicity, we assume the latter.

The least polyvariant analysis has an allocator which produces even fewer distinct addresses—

in fact, only a single address � which over-approximates all concrete addresses in any precise

evaluation of the target:

�alloc�(x, ς̃) � �

We might call this the univariant allocation scheme because it produces only a single address

and smashes all program values together. Even an analysis as imprecise as this could have

a use. For example, univariant allocation would make for an exceptionally cheap analysis

powering dead-code elimination.

Instead of defining a set of abstract addresses explicitly as done in Section 3.1.1, we

can now allow this set to be defined implicitly by the image or codomain of the allocation

function. This does mean that for an analysis to be computable, the allocator must only

produce a finite number of abstract addresses. An allocator which does not produce a finite
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number of addresses, essentially an infinitely polyvariant allocation strategy, may be used

to tune our analysis to concrete evaluation:

�alloc⊥(x, (call , ρ̃, σ̃)) � (x, |dom(σ̃)|)

This is also an example of a form of polyvariance which must introspect on the current

program state in order to produce an address. Without looking at the current store (or using

another method), a concrete allocator is unable to ensure it always produces a fresh address

(and thus avoids all merging in the store). Being able to represent concrete evaluation as

a choice of allocator is also useful because it allows us to write a precise interpreter and a

static analysis simultaneously as a single body of code. Along with promoting code reuse

and concision, this means testing either one also aids the robustness and stability of the

other (Jenkins et al., 2015).

Now we have seen three simple points within the design space of allocation strategies

and polyvariance. Univariant allocation and concrete allocation frame this design space

and represent two top-most and bottom-most strategies; monovariance lies between. Two

important questions are left to be answered about the correspondence between polyvariance

and allocation, however. First, we must consider whether there is any tuning of allocation

which is unsafe (i.e., leads to an unsound analysis) or which is not polyvariant. Second, we

must consider whether there are polyvariant strategies which may not be implemented as

an allocator.

4.3 A Posteriori Soundness
The usual process for proving the soundness of an abstract interpretation is a priori in

the sense that it may be performed entirely before an analysis is executed. This is the kind

of soundness theorem we described in Section 3.2. By contrast, Might and Manolios Might

and Manolios (2009) describes an a posteriori soundness process where the abstraction

map cannot be fully constructed until after analysis. This approach factors each α to

separate the abstraction of addresses αAddr , producing a family of parametric maps β such

that β(αAddr ) = α. A nondeterministic abstract interpretation is then constructed which

simultaneously attempts all possible allocation strategies. (This could also be an arbitrary

allocation function without loss of generality.) After the analysis is performed, regardless of

the allocation strategy taken, a consistent abstraction map may be constructed a posteriori

which justifies each choice of abstract address whatever it may have been. It is then always

possible to plug this Galois connection for addresses into the parametric Galois connection

defined by β to obtain a complete connection and proof of soundness.
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What is special about the allocation of abstract addresses which could make even a

random number generator a sound choice of allocator? Clearly we could not define the

operation of most other components of our abstract machine randomly and still guarantee

a sound analysis. Intuitively, it is because in a concrete evaluation of any program, we

may select a fresh and unique address for every new allocation. (In fact, we might justify

a garbage collection scheme as safe by showing that when an address becomes unreachable,

it may be reclaimed and the semantics are guaranteed to remain equivalent to allocating a

fresh address.) Allocating a sequence of fresh, unique addresses which are never duplicates of

previous concrete addresses is thus a central characteristic of what it means to be a concrete

allocator. Whatever the behavior of abstract address allocation then, no inconsistency

may arise in the αAddr it induces because of just this property. No concrete address may

become abstracted to two different abstract addresses along the sound abstract program

trace because no concrete address is allocated more than once.

To illustrate this point, consider Figure 4.2. It shows a program call 0 being injected into

a starting state, ς0, and evaluated step by step. A static analysis performed by iterating

an abstract transition relation will produce a transition graph, but for the analysis to be

sound, the concrete program trace must abstract to some path through this graph. Such

a path is illustrated below, spurious transitions dangling from it. Dotted lines are used

to illustrate “abstracts to” relationships for states and addresses (points in αΣ and αAddr ).

If a concrete machine and its abstract machine are simulated in lock-step, each abstract

transition which allocates an address has two choices: either it can allocate an address âi it

has allocated before, or it may allocate a new address âi. In both cases, it is deciding what

the corresponding (necessarily fresh) concrete address ai must abstract to in αAddr . In this

way, a bisimulation incrementally builds up an abstraction map for addresses, incrementally

adding each point [ai �→ âi], one at a time.

In the original presentation of the a posteriori soundness theorem, Might and Manolios

state an assumption which says that each new abstraction map αAddr [ai �→ âi] must be

consistent with whatever partial abstraction map αAddr was built up previously. No further

intuitions were given for this assumption, though it is actually the central property which

allows the entire a posteriori soundness process to work. For the abstraction induced

by the pairing of a concrete allocator and abstract allocator to be inconsistent, the same

concrete address would need to be abstracted to two different abstract addresses. Because a

concrete allocator must, by definition, produce a fresh address for every invocation, no such

inconsistency is possible, regardless of the abstract allocator chosen. Each αAddr [ai �→ âi]
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call0

ς0 ς1 ς2 ς3 ς4 ς5

ς̂0 ς̂1 ς̂2 ς̂3 ς̂4 ς̂5

. . . . . . . . . . . . . . . . . .

a0 a1 a2 a3 a4

â0 â1 â2

· · ·

· · ·

Figure 4.2. All strategies for allocation induce a consistent Galois connection for addresses.

must be consistent with αAddr because the concrete address, ai, cannot already be present

in αAddr . This makes abstract allocation a tunable analysis parameter with the unique

property that every possible tuning results in a sound analysis.

We may now review the a posteriori soundness theorem in the context of AAM.

Theorem 3 (A posteriori soundness). If (ς,a) is a concrete execution where ς is a sequence

of states and a = �a0, a1, a2, . . .� is the sequence of concrete addresses allocated, and if some

(�∧

S
) is a dependent simulation (Might and Manolios, 2009) of (→Σ) under β (dependent

only on finding an abstraction map for addresses), and if ŝ is a closed abstract transition

graph over states, then there must exist an abstraction map for addresses, αAddr , such that

ŝ is a sound simulation of (ς, a) under the abstraction map β(αAddr ).

Proof. (Summary of Might and Manolios (2009).) We proceed by performing an a posteriori

construction of αAddr . This is done by building up a simulating sequence of abstract states

ς̂ = �ς̂0, ς̂1, ς̂2, . . .�, their respective abstract addresses ã = �ã0, ã1, ã2, . . .�, and a sequence

of partial address abstraction maps α = �α0,α1, . . .�. Let N be the length of ς and the

initial abstraction map α0 be ⊥. At each step, a next abstract address âi (or several

for multiple-argument lambdas) and abstract state ς̂i may be chosen simultaneously and

nondeterministically from a nonempty set of candidate transitions guaranteed to exist by

the dependent simulation condition (Might and Manolios, 2009). Each new point [ai �→ âi]

is accumulated into an updated intermediate abstraction map αi = αi−1[ai �→ âi] which

inductively builds up αAddr in its limit:

αAddr = lim
i→N

αi

Then ς̂ in ŝ is a simulation of (ς, a) with respect to β(αAddr ).
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4.4 Introspection and Instrumentation
Now we may consider whether or not any strategy for polyvariance can be implemented

as a tuning of the allocation function. What about more precise forms of call sensitivity,

1-CFA or 2-CFA? A 1-call sensitive allocator can be defined by introspecting on the state

being transitioned from and incorporating the most recent call site into the address being

produced:

�alloc1CFA(x, (call ,_,_)) � (xi, call)

This makes addresses (and their flow sets) unique to both the variable x and the call site

which preceded the binding. If we were to attempt an implementation of a more precise

variant of call sensitivity, however, like 2-CFA, we run into a problem because our analysis

simply does not include the information necessary to guide this style of polyvariance. The

current abstract state contains the most recent call site passed through, but it does not

include the second most recent call site.

To permit a tuning for �alloc2CFA, we could instrument our core flow analysis with a new

fourth component of machine states that specifically tracks the second most recent call site.

If we were to extend the analysis with such information, a 2-call sensitive allocator could be

defined:

�alloc2CFA(x, (call ,_,_, call �)) � (xi, call , call
�)

In this case, call � is a new component of machine states that represents the second most

recent call site. Naturally, (�∧

Σ
) and Î would need to be extended to include this information.

Crucially, due to the a posteriori soundness theorem, we may add whatever instrumen-

tation is needed to guide the behavior of an allocator. An analysis designer may wish to

extend the core flow analysis in a way which is sound with respect to a dynamic analysis

or instrumentation of the concrete semantics; however, even if the analysis is extended with

unsound information about a program, this information can still be used to guide allocation

behavior without any possibility of it causing unsoundness within the core flow analysis (e.g.,

within the store). This means we may leave such instrumentation open as another parameter

to a semantics and place no restrictions on its behavior. Because we lose no expressivity

in this instrumentation, all conceivable allocation functions can be expressed as well. This

means all strategies for merging and differentiation of abstract addresses (and their flow

sets) are possible, and thus all forms of polyvariance may be expressed as a combination of

some allocator and some instrumentation.
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4.5 A Parametric Analysis
In this section, we present a parametric semantics which may be tuned by both an

allocation function and an instrumentation (an arbitrary extension of the analysis). Ty-

pographically, we switch exclusively to using tildes to keep this machine distinct from the

machine of Chapter 3.

Our parametric semantics is encoded in a function:

CFA :

start state����
Σ̃ ×

instrumentation� �� �
(Σ̃× Call× �Env × �Store → P(Ĩ))

×
allocator� �� �

(Var × Σ̃ → �Addr) →
analysis� �� �

(S̃ → S̃)

CFA is a function of three arguments: a starting state, ς̃0, which specifies the program to

interpret and its initial ι̃0, an instrumentation, ( Inst�), which may be used to extend the core

analysis arbitrarily, and an allocator, �alloc. Given three such parameters, CFA(ς̃0,
Inst�,�alloc)

yields a monotonic analysis function which may be iterated to a fixed point. If the image of
�alloc (the set �Addr it can produce) and the image of ( Inst�) (the set of sets of Ĩ it can produce)

are finite sets, then there must exist an n ∈ N such that (CFA(ς̃0,
Inst�,�alloc))n(⊥) is a fixed

point encoding a sound analysis of ς̃0 using the instrumentation and style of polyvariance

specified.

Figure 4.3 shows the signatures of the three parameters to CFA. The allocator defines

a set of addresses �Addr for the analysis to use. The instrumentation relation defines a set

of instrumentation data Ĩ to extend the core flow analysis and enable a greater variety

of allocators. An instrumentation is a function which, taking the underlying analysis

transition into account, determines the instrumentation data to be included in successor

states. Although this may not constrain the core flow analysis, to emphasize that it can

encode an entire analysis of its own, we use the following syntactic sugar:

ς̃
Inst� (call �, ρ̃�, σ̃�, ι̃�) ⇐⇒ ι̃� ∈ (

Inst�)(ς̃, call �, ρ̃�, σ̃�)

Figure 4.4 shows the remaining domains that the machine operates over. These are

similar to the domains in Chapter 3 except that states and configurations contain instru-

mentation data (ι̃) and addresses are specified implicitly by the allocator chosen.

Figure 4.5 defines the transition relation (��
S
) yielded by CFA when supplied with all

its arguments, as well as a store-widened version (��
Ξ
) yielded by CFA�. There are three

meaningful changes from the semantics of Chapter 3, one for each parameter. First, the

starting state ς̃0 is as provided and not produced by an injection function (this allows the user
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ς̃0 ∈ Σ̃

�alloc ∈ Var × Σ̃ → �Addr

(
Inst�) ∈ Σ̃× Call× �Env × �Store → P(Ĩ)

Figure 4.3. Parameters to our parametric semantics.

s̃ ∈ S̃ � P(Σ̃) [analysis results]

ξ̃ ∈ Ξ̃ � R̃× �Store [widened results]

r̃ ∈ R̃ � P(C̃) [reachable configs]

c̃ ∈ C̃ � Call× �Env × Ĩ [configurations]

ς̃ ∈ Σ̃ � Call× �Env × �Store × Ĩ [states]

ρ̃ ∈ �Env � Var � �Addr [environments]

σ̃ ∈ �Store � �Addr → �Value [value stores]

ι̃ ∈ Ĩ is defined by the parameter (
Inst�) [inst. data]

ã ∈ �Addr is defined by the parameter �alloc [addresses]

ṽ ∈ �Value � P(�Clo) [flow sets]
�clo ∈ �Clo � Lam× �Env [closures]

Figure 4.4. Abstract domains for our parametric semantics.

to control the initial instrumentation data along with the program to be analyzed). Second,

addresses ãi are constrained only by the allocator �alloc provided. Third, the instrumentation

function (
Inst�) constrains the instrumentation data ι̃� based on all other components of a

transition.

4.6 Allocation Characterizes Polyvariance
This section explores the design space opened up by a semantics parameterized over

both an instrumentation and an abstract allocator, showing how it encompasses a variety

of previously published polyvariant techniques, novel techniques, and variations on these.

4.6.1 Call Sensitivity (k-CFA)

Call-sensitive instrumentation tracks a history of up to k call sites for use in differenti-

ating addresses.
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CFA(ς̃0,
Inst�,�alloc) � (��

S
)

CFA�(ς̃0,
Inst�,�alloc) � (��

Ξ
)

(��
S
) : S̃ → S̃

s̃ ��
S
s̃�, where

s̃� = {ς̃ � | (call , ρ̃, σ̃, ι̃) ∈ s̃ ∧ (call , ρ̃, σ̃, ι̃) ��
Σ
ς̃ �} ∪ {ς̃0}

(��
Ξ
) : Ξ̃ → Ξ̃

(r̃, σ̃) ��
Ξ
(r̃�, σ̃��), where

s̃� = {ς̃ � | (call , ρ̃, ι̃) ∈ r̃ ∧ (call , ρ̃, σ̃, ι̃) ��
Σ
ς̃ �} ∪ {ς̃0}

r̃� = {(call �, ρ̃�, ι̃�) | (call �, ρ̃�, σ̃�, ι̃�) ∈ s̃�}
σ̃�� =

�

(_,_,σ̃�,_)∈s̃�
σ̃�

Ã : AE× Σ̃ � �Value
Ã(x, (call , ρ̃, σ̃, ι̃)) = σ̃(ρ̃(x))

Ã(lam, (call , ρ̃, σ̃, ι̃)) = {(lam, ρ̃)}

(��
Σ
) ⊆ Σ̃× Σ̃

ς̃� �� �
((aef ae1 . . . aej), ρ̃, σ̃, ι̃) ��

Σ
(call �, ρ̃�, σ̃�, ι̃�)

where ((λ (x0 . . . xj) call �), ρ̃λ) ∈ Ã(aef , ς̃)

ṽi = Ã(aei, ς̃)

ρ̃� = ρ̃λ[xi �→ ãi]

σ̃� = σ̃ � [ãi �→ ṽi]

ãi = �alloc(xi, ς̃)

ς̃
Inst� (call �, ρ̃�, σ̃�, ι̃�) (N.B. this syntactic sugar.)

Figure 4.5. Transition rules for our parametric semantics.
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(call , _, _, ι̃)
Inst�call(k) (_, _, _, takek(call : ι̃))

The function takek returns the front at-most k elements of its input as a new list. For

this instrumentation to distinguish between two syntactically equivalent call sites located in

different parts of a program, we assume two pieces of syntax are only equal when they are

the same piece of syntax from the same part of the same program. This allows us to safely

lift an equivalence relation on syntax to an equivalence relation for addresses.

Using (
Inst�call(k)), we may tune our analysis to implement k-CFA using an allocator which

incorporates these k-length call histories in the addresses it produces.

�alloccall(x, (call , ρ̃, σ̃, ι̃)) � (x, ι̃)

The parametric semantics of Section 4.5 can be tuned to recapitulate the k-call sensitive

style of polyvariance for a program call0 using the parameterization:

CFA((call0,∅,⊥, �),
Inst�call(k),�alloccall)

4.6.1.1 Ambiguity in k-CFA
The original formulation of k-CFA was described as tracking a history of the last k call

sites execution passed through; however, it was applied to a CPS intermediate representa-

tion. After a CPS transformation, every return point has been encoded as a call site. This

means, as implemented, k-CFA was actually tracking a history of the first k call sites or

return points. A call sensitivity which only remembers call sites and not return points is

a somewhat different form of polyvariance from what Shivers originally formalized Shivers

(1991).

Using a direct-style language, this difference would be easy to formalize as a tuning of

our parametric framework because the difference between calls and returns is syntactically

evident. Using CPS, we must assume either partitioned CPS with both lambda and cont

forms which behave identically but are kept separate, or we must assume this distinction is

being encoded another way. To demonstrate a tuning for call-only sensitivity, we assume a

predicate Ret : Call → Bool which returns true if and only if the call site given was originally

a return point (before CPS conversion). We are only required to change the behavior of our

instrumentation:

(call ,_,_, ι̃)
Inst�callonly(k)

�
(_,_,_, takek(call : ι̃)) ¬Ret(call)
(_,_,_, ι̃) Ret(call)

We can then instantiate our framework to a 2-call-only sensitive analysis as follows:

CFA((call0,∅,⊥, �))(
Inst�callonly(2))(�alloccall)
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We can also produce tunings which represent an analysis that remembers only return

points or an analysis sensitive to the top k stack frames. This means there are at least

four reasonable interpretations of k-CFA which resolve the ambiguity between its original

description and its original formalization. Each of these four styles of polyvariance are

subtly different and may yield a different analysis result. Furthermore, none of these four

styles of polyvariance strictly dominates the precision of any other. For each, we can find

examples where that specific interpretation of k-CFA produces the best result. For example,

the following snippet of Racket code (before CPS conversion) differentiates call+return

sensitivity and call-only sensitivity.

(let ([id (lambda (x) x)]

[f (lambda (g) (let ([v (g)]) v))])

(f (lambda () (id #f)))

(f (lambda () (id #t))))

The last call before binding v a first time is (id #f), but the second time, it is (id #t).

This means a 1-call-only sensitive analysis will keep both addresses bound to v distinct.

The last call or return before binding v, however, is the identity function’s return point x

in both cases. This means a 1-call+return style of polyvariance will merge both #t and #f

at a single address for v.

Different styles of polyvariance represent different heuristics for the trade-off between

precision and complexity and may strike a poor balance on one program while striking

an excellent balance on another. Having a safe parametric framework which can so easily

instantiate any conceivable heuristic could prove an important step in understanding which

styles of polyvariance work best in what situations and thereby inform us how to better

adapt the polyvariance used to suit a particular target of analysis.

4.6.1.2 Variable Call Sensitivity
Wright and Jagannathan’s polymorphic splitting is a form of adaptive call sensitivity

inspired by let-polymorphism where the degree of polyvariance can vary between functions

(Wright and Jagannathan, 1998). The number of let-form binding expressions (right-hand

sides) within which a lambda was originally defined (in the case of our language, before CPS

conversion) forms a simple heuristic for its call sensitivity when invoked. To implement k-call

sensitivity with a per-function k, we assume a parameter function L : Call → N that takes

the body of a lambda and gives back a k for its let-depth (or any other heuristic for varying

the maximum length call history).
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(call , _, _, ι̃)
Inst�Lcalls(L) (call

�, _, _, take(L(call �))(call : ι̃))

This call history is then used for allocating addresses.

�allocLcalls(x, (call , ρ̃, σ̃, ι̃)) � (x, ι̃)

Because all parameterizations of our semantics are sound, all possible heuristics L are too.

No tuning of L can produce an infinite k, only arbitrarily large k. In the case of polymorphic-

splitting, because no program can contain an infinite nesting of let-forms, every program

has a let-polymorphic tuning of L.

This instrumentation and allocator generalize the behavior of polymorphic splitting and

could be further generalized by adding a function like Ret from the previous subsection for

selecting which call sites to include in the history to begin with. In this way, call sensitivity

can be seen as a wide design space itself within the broader design space of polyvariant

allocation strategies.

4.6.2 Object Sensitivity

Smaragdakis et al. (2011) distinguish multiple variants of object sensitivity, first described

by Milanova et al. (2005). This style of context sensitivity is entirely different from call

sensitivity and uses a history of the allocation points for objects to guide polyvariance.

We temporarily extend our language with a vector-form to represent simple objects and

present a faithful tuning for object sensitivity.

ae ∈ AE ::= lam | x | vec

vec ∈ Vec ::= (vector x . . . )

We define abstract-object values permitted within flow sets (tuples of pointers):

ṽ ∈ �Value � P(�Clo + �Obj )

�obj ∈ �Obj � �Addr
∗

And give vector syntax an interpretation in the atomic-expression evaluator:

Ã(x, (call , ρ̃, σ̃, ι̃)) = σ̃(ρ̃(x))

Ã(lam, (call , ρ̃, σ̃, ι̃)) = {(lam, ρ̃)}

Ã((vector x0 . . . xj), (call , ρ̃, σ̃, ι̃)) =

{(ρ̃(x0), . . . ρ̃(xj))}

As the fields of our objects are effectively each vector’s indices, and because these are

strictly kept distinct instead of being merged, we can call this representation for vectors field
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sensitive (Liang and Might, 2012). Flow sets for objects look like {(ã1, ã2, ã3), . . .} and not

like {ã1, ã2, ã3, . . .}, preserving the relationship between keys and values. Allowing these lists

of addresses within flow sets is not a new source of unboundedness in the machine because

the longest possible list is the length of the longest vector form in the finite program text.

In Smaragdakis’ framework, k-full-object sensitivity tracks the allocation point of each

object, the allocation point for the object which created it, and so forth. In our extended

CPS language, the zeroth parameter to a function is its receiving object.

Õ ∈ Call∗

σ̃O ∈ �Addr × �Obj → P(Call∗)

Each state is extended with a current allocation history, Õ, and an object-sensitivities

store, σ̃O, which maps an abstract object at an address to a set of possible allocation histories

for that object. Each transition extends σ̃O with a new allocation history (produced by

extending the current allocation history Õ with a new allocation point, the current call site)

for each ae i that constructs a new object. Existing objects bound to a variable (some yi) have

their histories propagated along with the objects. Each transition then yields a successor for

each possible allocation history associated with a receiving object. If global-store widening

is used for an analysis, a similar form of widening might be used for object-sensitivities

stores.

ς̃� �� �
((aef . . . aej), ρ̃, _, (σ̃O, Õ))

Inst�obj (k) (call
�, ρ̃�, _, (σ̃�

O, Õ
�))

where ((λ (x0 . . . xj) call �),_) ∈ Ã(aef , ς̃)

�obj i ∈ Ã(aei, ς̃)

Õ� ∈ σ̃�
O(ρ̃

�(x0), �obj 0)

σ̃�
O = σ̃O �

�

aei=(vector ...)

[(ρ̃�(xi), �obj i) �→ {takek((aef . . . aej) :Õ)}]

�
�

aei=yi

[(ρ̃�(xi), �obj i) �→ σ̃O(ρ̃(yi), �obj i)]

An allocator for this style of polyvariance then pairs each variable with the current

allocation history (ignoring the sensitivities store which only needs to be used internally).

�allocobj(x, (_, _, _, (σ̃O, Õ))) � (x, Õ)
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Smaragdakis et al. (2011) and Lhoták and Hendren (2006) find object sensitivity to

be particularly efficient for object-oriented languages in their empirical investigations using

the Java DaCapo and SpecJVM benchmarks. Kastrinis and Smaragdakis (2013) present

combinations of object and call sensitivity. Combinations of styles of polyvariance can also

be accomplished by a tuning of instrumentation and allocation. Section 4.6.5 presents a

general method for combining multiple styles of polyvariance.

4.6.2.1 Closure Sensitivity

Inspired by object sensitivity, we formalize a novel analogue for functional languages

called closure sensitivity. In this style of polyvariance, we view closures as the fundamental

objects of higher-order languages (in the terminology of object-oriented languages, they are

their own receivers) and associate them with closure-creation histories directly. No changes

need to be made to our CPS language and its semantics.

ς̃� �� �
((aef . . . aej), ρ̃, _, (σ̃O, Õ))

Inst�clo(k) (call
�, ρ̃�, _, (σ̃�

O, Õ
�))

where ((λ (x0 . . . xj) call �), ρ̃λ) ∈ Ã(aef , ς̃)

�cloi ∈ Ã(aei, ς̃)

σ̃�
O = σ̃O �

�

aei=(lambda ...)

[(ρ̃�(xi), �cloi) �→ {takek((aef . . . aej) :Õ)}]

�
�

aei=yi

[(ρ̃�(xi), �cloi) �→ σ̃O(ρ̃(yi), �cloi)]

Õ� ∈
�
{takek((aef . . . aej) :Õ)} aef = (lambda ...)

σ̃O(ρ̃(yf ), ((λ (x0 . . . ) call �), ρ̃λ)) aef = yf

Instead of vectors, closures created at the current call site become bound to the current

allocation history (extended with the current call site) across each transition. Instead of the

zeroth argument being used to determine successor-state allocation history, the value in call

position is used.

�allocclo(x, (_, _, _, (σ̃O, Õ))) � (x, Õ)

4.6.3 Argument Sensitivity

Agesen Agesen (1995) introduces a Cartesian product algorithm (CPA) as an enhance-

ment to a type recovery algorithm (which can be viewed as an abstract interpretation
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where dynamic program types are used as abstract values). We will consider the source

of imprecision that the original formulation attempts to address, generalize its solution as a

form of polyvariance in our approach, and discuss CPA’s complexity and precision relative

to call and object sensitivity.

The basic algorithm, that CPA extends, assigns a flow set of dynamic types for each

variable in the program, it establishes constraints based on the program text, and it propa-

gates values until all these constraints have been met. The primary method for overcoming

this merging is introduced as the p-level expansion algorithm of Oxhøj et al. (1992)—a

polyvariant type-inference algorithm and analogue to the call-string histories of Harrison and

then Shivers, where the use of p parallels that of k in k-CFA. This is shown to be insufficient,

however, as the authors of CPA give a case of merging which cannot be overcome by any

value of p. Besson (2009) further illustrates this point in the context of Java, claiming “CPA

beats ∞-CFA”.

The original motivating example for CPA was a polymorphic max function:

... (let ([max (lambda (a b) (if (> a b) a b))])

...)

Here, the only constraint for an input to max is that it support comparison, so a call

(max “a” “at”) makes as much sense as a call (max 2 5). However, if both these calls are

made with a sufficient amount of obfuscating call (or object) history behind them, merging

will cause the flow sets for both a and b to each include both string and int (i.e., abstract

values for those types). This is imprecise as it implies that a call (max 2 “at”) is possible,

even when it is not. The problem then, can be summarized as the existence of spurious

interargument patterns which become inevitable when the flow sets for different syntactic

arguments are entirely distinct.

The solution that CPA proposes is to replace flow sets of per-argument types, with flow

sets of per-function tuples of types. In such an analysis, the function max itself would be

typed {(int, int), (string, string) . . .} preserving interargument patterns and eliminating

spurious calls where the types do not match.

In essence, this change makes flow sets for each argument specific to the entire tuple of

types received in a call. This suggests that, although no amount of call history will ensure

the preservation of interargument correlations, a form of polyvariance which makes addresses

specific to a tuple of abstract values for arguments can.

We must be careful here in extending this idea to an allocator for our CPS language. If

a tuple of closures is included inside addresses, the mutual recursion of addresses, closures,
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and environments makes the analysis unbounded. Instead, we assume a helper function T
which further abstracts abstract values so they cannot contain addresses. For an approach

especially similar to CPA itself, we might define T so it yields types. For a functional

language, we can define T so that it strips environments out of closures and leaves just a

set of syntactic lambdas. For example:

T (d̃) � {lam | (lam, ρ̃) ∈ d̃}

In a sense, syntactic lambdas are at least as specific as a type (their type signature, whatever

type system is used) whether or not that type is known a priori by an analysis (Gilray and

Might, 2013a).

With this, we may define an argument sensitive style of polyvariance, like CPA, as an

abstract allocator.

�allocCPA(x,

ς̃� �� �
((aef ae0 . . . aej), _, _, _))

= (x, (T (Ã(ae0, ς̃)), . . . , T (Ã(aej , ς̃))))

We can also observe how easy it would be to construct less precise variations of this allocator

by including only some arguments within addresses. For example, including only the first

argument might yield enough precision in many cases:

�allocarg0(x,

ς̃� �� �
((aef ae0 . . . aej), _, _, _))

= (x, T (Ã(ae0, ς̃)))

We could even vary the arguments an analysis is sensitive to on a per-function basis like we

did for polymorphic splitting in Section 4.6.1.2.

Like call sensitivity and object sensitivity, CPA can be of exponential complexity in the

size of the program and is exceedingly impractical for use on sufficiently complex input

programs. CPA is also, however, an excellent illustration of the principal that, in practice,

more precision can also lead to smaller model sizes and faster analysis times. Where

CPA improves precision, it is also fastest, and where CPA is unnecessary and delivers no

improvement over k-CFA, it is enormously inefficient. For a function like max, one where

the types of the arguments should match, CPA accumulates only a single value for each

type that can flow to the function. For a function where all combinations of arguments are

possible, CPA requires each combination to be enumerated explicitly. k-CFA implies all

interargument combinations for equal precision at far greater efficiency. This would seem to

support an effort to discover more adaptive variations on CPA.
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4.6.4 Extreme-Precision Allocators

We can even further generalize the central idea of CPA to consider forms of polyvariance

which preserves interaddress correlations in the store. What about an extreme case for

the precision of an allocator where an analysis allocates addresses specific to entire stores

(or portions of stores, or specific addresses in the store)? As it turns out, we can even

recover all the precision lost through structurally store widening as a form of store-sensitive

polyvariance.

We assume the underlying allocator (in a store-sensitive setting) is �alloc and its in-

strumentation is Inst�. Using these, we may produce an instrumentation for recovering store

sensitivity within a structurally store widened parametric semantics by rebuilding the state-

specific environments and stores lost due to store widening.

ς̃� �� �
((aef ae0 . . . aej), ρ̃, σ̃, (ι̃, ρ̃Σ, σ̃Σ))

Inst�
ss(�alloc, Inst�)

(call �, ρ̃�, σ̃�, (ι̃�, ρ̃�Σ, σ̃
�
Σ))

where ((λ (x0 . . . xj) call �), ρ̃λ) ∈ Ã(aef , ς̃)

ṽi = Ã(aei, ς̃)

ρ̃�Σ = ρ̃λ[xi �→ ãi]

σ̃�
Σ = σ̃Σ � [ãi �→ ṽi]

ãi = �alloc(xi, ς̃)

((aef ae0 . . . aej), ρ̃, σ̃, ι̃)
Inst� (call �, ρ̃�, σ̃�, ι̃�)

We then use an allocator which embeds these recovered exact environments and stores to

differentiate addresses.

�allocss(x, (call , ρ̃, σ̃, (ι̃, ρ̃Σ, σ̃Σ))) � (x, call , ρ̃Σ, σ̃Σ)

Using a similar instrumentation which rebuilds exact environments, we can also recover

the full environment sensitivity lost through closure conversion, or the use of mCFA or

poly-k-CFA.

�alloces(x, (call , ρ̃, σ̃, (ι̃, ρ̃Σ))) � (x, call , ρ̃Σ)

In this way, we can observe that some important forms of coarser structural abstraction

(store widening and the use of flat environments) are encompassed by our design space for

polyvariance.
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4.6.5 Combining Forms of Polyvariance

For two forms of polyvariance, we may combine them by essentially taking the product

of their instrumentations and the product of their allocators. Consider two forms of poly-

variance characterized by �alloc0 paired with (
Inst�0) and �alloc1 paired with (

Inst�1), respectively.

We can produce a new instrumentation which compiles the information added by both

(
Inst�0) and (

Inst�1):

(call , ρ̃, σ̃, (ι̃0, ι̃1))
Inst�× (call �, ρ̃�, σ̃�, (ι̃�0, ι̃

�
1))

where (call , ρ̃, σ̃, ι̃0)
Inst�0 (call

�, ρ̃�, σ̃�, ι̃�0)

(call , ρ̃, σ̃, ι̃1)
Inst�1 (call

�, ρ̃�, σ̃�, ι̃�1)

Likewise, we can produce a new allocator which returns an address specific to both

addresses returned by �alloc0 and �alloc1:

�alloc×(x, (call , ρ̃, σ̃, (ι̃0, ι̃1))) �

(�alloc0(x, (call , ρ̃, σ̃, ι̃0)),�alloc1(x, (call , ρ̃, σ̃, ι̃1)))



CHAPTER 5

PERFECT STACK PRECISION

In this chapter, we will explore the issue of call-stack precision, the precision of matching

calls with their respective returns, applying the approach of this dissertation.

In Section 5.1, we extend our intermediate language to include both explicit call sites

and return points. This direct-style language, a λ-calculus in administrative normal form,

requires us to give special consideration to modeling the call stack and is used for the

remainder of Chapter 5. We will see specifically how the analyses discussed so far may

lose precision upon function return, even where polyvariance initially keeps values separate

across the corresponding call.

In Section 5.2, we formalize an idealized static analysis which provides us with a definition

and model for perfect stack precision. This unbounded-stack machine may be tuned to any

approximation of program values (as discussed in Chapter 3) and to any style of polyvariance

for these values (as discussed in Chapter 4), but cannot lose precision in its modeling of the

structure of the call stack (i.e., which frames are on the stack at a given moment—where

values can be returned to).

In Section 5.3, we discuss the three previous attempts to produce a computable static

analysis with perfect stack precision. One of these approaches is necessarily exponential-time

and requires additional engineering effort for its initial construction and continued main-

tainence (Vardoulakis and Shivers, 2010). Another requires only a quadratic-factor increase

to the worst-case running time of the underlying analysis, but likewise incurs a similar

penalty in terms of human labor (Earl et al., 2010). A third requires a worse-than-quadratic,

polynomial-factor increase in complexity class, but may be considered free in terms of

its development cost, assuming an analysis which uses the store-allocated-continuations

approach (Johnson and Van Horn, 2014).

In Section 5.4, we apply these lessons learned and the techniques of the previous chapters

to obtain a general method for perfect stack precision which is both computationally free

(i.e., no increase in worst-case complexity class or, as our benchmarks would suggest, average
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states explored) and developmentally free (i.e., no additional labor or engineering complexity

for analyses using the store-allocated-continuations approach). This is accomplished using

an introspective continuation allocator that adapts to the function entry points reached

under whatever value allocator is used in the underlying analysis (i.e., one using the CPS

framework of previous chapters). We will compare this to the approaches of Section 5.3,

discuss the intuition for why it works, analyze its complexity, and give a detailed proof of

its precision with respect to the unbounded-stack machine of Section 5.2.

5.1 Administrative Normal Form
To address the return-flow merging problem, we replace our CPS intermediate language

with a direct-style (call-by-value, untyped) λ-calculus in the administrative normal form

(ANF) of Flanagan et al. (1993). ANF unifies all direct-style continuations (e.g., argument

and condition continuations) a richer language might support, providing only a single let

continuation. This greatly simplifies the language and is convenient for analysis as every

intermediate expression is administratively let-bound and may be assigned a unique variable

name. ANF differs from the monadic normal form of Moggi (1991) only in that it is unable

to let-bind a let-form—nested lets must form a sequence and not a tree (Kennedy, 2007).

e ∈ Exp ::= (let ([x (f ae)]) e) [call]

| ae [return]

f, ae ∈ AExp ::= x | lam [atomic expressions]

lam ∈ Lam ::= (λ (x) e) [lambda abstractions]

x, y ∈ Var is a set of identifiers [variables]

Conversion to ANF depends on an evaluation strategy and makes the order of operations

explicit as a stack of let-forms. Additional core forms permitting mutation, recursive

binding, conditional branching, tail calls, and primitive operations add complexity, but

do not complicate the technique we aim to discuss in this chapter and so are left out.

We may view the abstract machine formalized in this section as strictly an extension on

the static analysis of previous chapters. For this reason, its components and their domains

wear tildes and we will refer to it as the finite-state machine (to differentiate from the

unbounded-stack machine of Section 5.2). For the remainder of this chapter, finite states

(ς̃) will be elements of Σ̃ defined:
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ς̃ ∈ Σ̃ � Exp× �Env × �Store [states]

× �KStore × �Addr

ρ̃ ∈ �Env � Var � �Addr [environments]

σ̃ ∈ �Store � �Addr → D̃ [stores]

d̃ ∈ D̃ � P(�Clo) [flow-sets]

�clo ∈ �Clo � Lam× �Env [closures]

σ̃κ ∈ �KStore � �Addr → K̃ [continuation stores]

k̃ ∈ K̃ � P(�Kont) [kont-sets]

κ̃ ∈ �Kont � �Frame × �Addr [continuations]

φ̃ ∈ �Frame � Var × Exp× �Env [stack frame]

ã, ãκ ∈ �Addr is a finite set [addresses]

Continuations, which were previously encoded as user-space lambdas, are now distinguished

as a machine component κ̃. These are formed by a stack frame (φ̃) and an address for

its sub-continuation in turn (ãκ). A stack frame is made of a variable x to bind and an

expression e to reinstate (together making up the λ-abstraction used in CPS), along with

an environment ρ̃ over which the expression e is closed. In CPS, this environment would

have mapped a variable for e’s continuation to an address. Instead, our ANF machine

distinguishes an address (ãκ), for the sub-continuation or stack tail, alongside φ̃. Likewise,

each machine state ς̃ is unique to an address for the current continuation, distinguished from

the rest of the environment. To maintain simplicity as we progress, the store is factored at

the top level into a value store (σ̃) and a continuation store (σ̃κ).

There were two fundamental sources of unboundedness in the concrete machine: the

value store (with an infinite domain of addresses), and the current continuation (modeled as

an unbounded list of stack frames). We bound the value store σ̃ by restricting its domain to

a finite set of addresses ã, but we permit a set of abstract closures �clo at each. We finitize

the stack similarly by threading it through the store as a linked list. A continuation is thus

represented by an address. This address points to a set of topmost frames, each paired with

the address of its continuation in turn (i.e., that stack’s tail). We separate the continuation

store σ̃κ from the value store σ̃ to maintain simplicity as we progress.

Abstract environments ρ̃ change only because our address set is now finite. Abstract

closures �clo are approximate only by virtue of their environments using these abstract

addresses. For each such ã, the finite value store σ̃ denotes a flow set d̃ of closures. At each
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point, a continuation store σ̃κ has a set of continuations k̃. Like closures, each abstract frame

φ̃ is only approximate by virtue of its abstracted environment. An abstract continuation κ̃

pairs a frame with an address ãκ for the stack underneath.

As before, we define a helper for abstract atomic evaluation Ã:

Ã : AExp× �Env × �Store � D̃

Ã(x, ρ̃, σ̃) � σ̃(ρ̃(x)) [variable lookup]

Ã(lam, ρ̃, σ̃) � {(lam, ρ̃)} [closure creation]

Note that atomic evaluation of a lambda expression now yields a set containing a single

element for the closure of that lambda.

Because our address domain is now finite, multiple concrete allocations need to be

represented by a single abstract address. There are a variety of sound strategies for doing

this. Each strategy corresponds to a distinct style of analysis and is amenable to easy

implementation by defining an auxiliary �alloc helper to encapsulate these differences in

behavior. Given the variable for which to allocate, the finite state performing the allocation,

and the closures invoked, the abstract allocator returns an address:

�alloc : Var × Σ̃ → �Addr

One such behavior is to simply return the variable itself (as a 0-CFA would):

�alloc0(x, ς̃) � x

Using �alloc0 would tune our finite-state semantics to the monovariant analysis style (also

called zeroth-order CFA), a form of context-insensitive analysis. In a monovariant analysis,

every closure that is bound to a variable x at any point during a concrete execution ends

up being represented in a single flow set when the analysis is complete.

Because we are also now store-allocating continuations and distinguishing a top-level

continuation store, we likewise distinguish an abstract allocator specifically for addresses in

this store:

�allocκ : Σ̃× Exp× �Env × �Store → �Addr

A standard choice is to allocate based on the target expression:

�allocκ 0((e, ρ̃, σ̃, σ̃κ, ãκ), e
�, ρ̃�, σ̃�) � e�

We provide to this function all the information known about the transition being made. The

value-store allocator is invoked before a successor ρ̃� or σ̃� is constructed. However, when
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calling the continuation-store allocator, we provide information about the target state being

transitioned to. The choice of e� for allocating a continuation address makes sense considering

the entry point of a function should know where it is returning. In fact, when performing

an analysis of a continuation-passing-style (CPS) language, e� would also naturally be the

choice inherited from a monovariant value-store allocator (assuming an alpha-renaming such

that every x is unique to a single binding point).

We may now define a nondeterministic finite-state transition relation (��
Σ
) ⊆ Σ̃ × Σ̃.

Call sites transition as follows.

ς̃� �� �
((let ([y (f ae)]) e), ρ̃, σ̃, σ̃κ, ãκ) ��

Σ
(e�, ρ̃�, σ̃�, σ̃�

κ, ã
�
κ), where

((λ (x) e�), ρ̃λ) ∈ Ã(f, ρ̃, σ̃)

ρ̃� = ρ̃λ[x �→ ã]

σ̃� = σ̃ � [ã �→ Ã(ae, ρ̃, σ̃)]

ã = �alloc(x, ς̃)

σ̃�
κ = σ̃κ � [ã�κ �→ {((x, e, ρ̃), ãκ)}]

ã�κ = �allocκ(ς̃, e�, ρ̃�, σ̃�)

As Ã yields a set of abstract closures for f , a successor state is produced for each. Likewise,

so each point in the store accumulates all closures bound at that abstract address ã and so

we faithfully over-approximate all the addresses a that ã simulates, we use a join operation

when extending the store. The join of two stores distributes point-wise as follows.

σ̃ � σ̃� � λã. σ̃(ã) ∪ σ̃�(ã)

σ̃κ � σ̃�
κ � λãκ. σ̃κ(ãκ) ∪ σ̃�

κ(ãκ)

Instead of generating a fresh address for ã, we use our abstract allocation policy to select

one. To instantiate a monovariant analysis like 0-CFA, this address is simply the syntactic

variable x. Likewise, we generate an address for our continuation (a new stack frame atop

the current continuation) and extend the continuation store.

The return transition is modified in the same way:
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ς̃� �� �
(ae, ρ̃, σ̃, σ̃κ, ãκ) ��

Σ
(e, ρ̃�, σ̃�, σ̃κ, ã�κ), where

((x, e, ρ̃κ), ã
�
κ) ∈ σ̃κ(ãκ)

ρ̃� = ρ̃κ[x �→ ã]

σ̃� = σ̃ � [ã �→ Ã(ae, ρ̃, σ̃)]

ã = �alloc(x, ς̃)

Where multiple topmost stack frames are pointed to by ãκ, this transition yields multiple

successors. An updated environment and store are produced as before, but the continuation

store remains as it was. The current continuation ã�κ reinstated in each successor is the

address associated with each topmost stack frame.

To approximately evaluate a program according to these abstract semantics, we first

define an abstract injection function, Ĩ, where the stores begin as functions, ⊥, that map

every abstract address to the empty set.

Ĩ : Exp → Σ̃

Ĩ(e) � (e,∅,⊥,⊥, ãhalt)

The address ãhalt can be any otherwise unused address that is never returned by the allo-

cation function. Our machine will eventually be unable to transition into this continuation

and will then produce no successors, which simulates the behavior of our concrete machine

upon reaching an empty stack (�).

We again lift (��
Σ
) to obtain a collecting semantics (��

S
) defined over sets of states:

s̃ ∈ S̃ � P(Σ̃)

s̃ ��
S
s̃� � s̃� = {ς̃ � | ς̃ ∈ s̃ ∧ ς̃ ��

Σ
ς̃ �} ∪ {Ĩ(e0)}

Our collecting relation (��
S
) is a monotonic, total function that gives a set including the

trivially reachable finite-state Ĩ(e0) plus the set of all states immediately succeeding those

in its input.

Because Σ̃ is now finite, we know the approximate evaluation of even a nonterminating

e0 will terminate. That is, for some n ∈ N, the value (��
S
)n(⊥) is guaranteed to be a fixed

point containing an approximation of e0’s full program trace.

5.1.1 Return-Flow Imprecision

To illustrate the effect of an imprecise stack on data-flow and control-flow precision, we

first define a more precise 1-call-sensitive (first-order, 1-CFA) allocator. A k-call-sensitive
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analysis style differentiates bindings to a variable so they are unique to a history of the last

k call sites reached before the binding. A history of length k = 1 then allocates an address

unique to the call site immediately preceeding the binding by using the following allocator.

�alloc1(x, (e, ρ̃, σ̃, σ̃κ, κ̃)) � (x, e)

Now, using �alloc1, consider the following snippet of code where the variable id is already

bound to (λ (x) 0x):

... 1(let ([y (id #t)])
2(let ([z (id #f)])

3...))

We number these expressions for ease of reference. For example, e2 refers to the let-form

that binds z, and e0 to the return point of id. We assume the starting configuration for this

example is (e1, ρ̃, ãκ) where ρ̃ and ãκ are the binding environment and continuation address

at the start of this code. We likewise let ρ̃λ be the environment of id’s closure.

The first call to id transitions to evaluate e0 with the continuation address e0. This

transition reaches the configuration (e0, ρ̃λ[x �→ (x, e1)], e0) and binds (x, e1) to #t and

the continuation address e0 to the continuation ((y, e2, ρ̃), ãκ), which gives us the following

stores:

σ̃ = {(x, e1) �→ {#t}}

σ̃κ = {e0 �→ {((y, e2, ρ̃), ãκ)}}

Next, id returns and transitions from e0 to e2, extending the continuation’s environment

to ρ̃[y �→ (y, e0)] and reinstating the continuation address ãκ. This yields a configuration

(e2, ρ̃[y �→ (y, e0)], ãκ). This transition binds (y, e0) to #t, giving us the following stores:

σ̃ = {(x, e1) �→ {#t},

(y, e0) �→ {#t}}

σ̃κ = {e0 �→ {((y, e2, ρ̃), ãκ)}}

Then the second call to id transitions to evaluate e0 with the continuation address e0

once again (recall the definition of �allocκ 0). This transition reaches the configuration



74

(e0, ρ̃λ[x �→ (x, e2)], e0), binding (x, e2) to #f and the continuation address e0 to the contin-

uation ((z, e3, ρ̃[y �→ (y, e0)]), ãκ), giving us the following stores:

σ̃ = {(x, e1) �→ {#t},

(y, e0) �→ {#t},

(x, e2) �→ {#f}}

σ̃κ = {e0 �→ {((y, e2, ρ̃), ãκ) ,

((z, e3, ρ̃ [y �→ (y, e0)]), ãκ)}}
Next, id returns and transitions from e0 to e3, reinstating the continuation address ãκ and

extending the continuation’s environment to ρ̃[y �→ (y, e0)][z �→ (z, e0)]. Because e0 is bound

to two continuations, this transition binds (z, e0) to #f while another spuriously binds (y, e0)

to #f, causing return-flow imprecision in the following stores:

σ̃ = {(x, e1) �→ {#t},

(x, e2) �→ {#f},

(y, e0) �→ {#t, #f},

(z, e0) �→ {#f}}

σ̃κ = {e0 �→ {((y, e2, ρ̃), ãκ) ,

((z, e3, ρ̃ [y �→ (y, e0)]), ãκ)}}

The address (y, e0), representing y within e3, maps to both #t and #f, even though no

concrete execution binds y to #f. A similar pair of transitions from (e0, ρ̃λ[x �→ (x, e1)], e0)

(the second of which is prompted by a change in the global continuation store at the address

e0) cause the same conflation for z.

Clearly, one solution is to increase the context sensitivity of our continuation allocator.

Consider a continuation allocator �allocκ 1 that like �alloc1 uses a single call site of context and

allocates a continuation address (e�, e) formed from both the expression being transitioned

to, e�, and the expresson being transitioned from, e. This results in no spurious merging at

return points because continuations are kept as distinct as the 1-call-sensitive value-store

addresses we allocate.

It seems reasonable from here to suspect that perfect stack precision could always be

obtained through a sufficiently precise strategy for polyvariant continuation allocation. The
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difficulty is in knowing how to obtain this in the general case given an arbitrary value-store

allocation strategy. Given that CFA2 and PDCFA promise a fixed method for implementing

perfect stack precision, albeit at significant engineering and run-time costs, can perfect stack

precision be implemented as a fixed adaptive continuation allocator? In this chapter, we

both answer this question in the affirmative and show that this leads us not only to a trivial

implementation but to only a constant-factor increase in run-time complexity.

5.2 An Unbounded-Stack Abstract Machine
In the same manner as previous work on this topic, we formalize perfect stack precision

using a static analysis that leaves the structure of stacks fully unabstracted. Each frame of

this unbounded stack is itself abstract because its environment is abstract and references

the abstracted value store. States and configurations, however, directly contain lists of such

frames that are unbounded in length. Environments, closures, stack frames, flow sets, and

value stores are otherwise abstracted in the same manner as the finite machine of Chapter 3.

To differentiate this from the machines we have seen so far, we call this an unbounded-stack

machine. In this chapter, components unique to this machine wear hats:

ς̂ ∈ Σ̂ � Exp× �Env × �Store × �Kont [states]

ρ̂ ∈ �Env � Var � �Addr [environments]

σ̂ ∈ �Store � �Addr → D̂ [stores]

d̂ ∈ D̂ � P(�Clo) [flow-sets]

�clo ∈ �Clo � Lam× �Env [closures]

κ̂ ∈ �Kont � �Frame
∗

[unbounded stacks]

φ̂ ∈ �Frame � Var × Exp× �Env [stack frames]

â ∈ �Addr is a finite set [addresses]

Our atomic-expression evaluator works just as before:

Â : AExp× �Env × �Store � D̂

Â(x, ρ̂, σ̂) � σ̂(ρ̂(x)) [variable lookup]

Â(lam, ρ̂, σ̂) � {(lam, ρ̂)} [closure creation]

As does a monovariant allocator:

�alloc : Var × Σ̂ → �Addr
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�alloc0(x, ς̂) � x

This may be tuned to any other allocation strategy as easily as before.

We now define a nondeterministic unbounded-stack-machine transition relation (�∧

Σ
) ⊆

Σ̂× Σ̂ and a rule for call-site transitions:

ς̂� �� �
((let ([y (f ae)]) e), ρ̂, σ̂, κ̂) �∧

Σ
(e�, ρ̂�, σ̂�, φ̂ : κ̂), where

φ̂ = (y, e, ρ̂)

((λ (x) e�), ρ̂λ) ∈ Â(f, ρ̂, σ̂)

ρ̂� = ρ̂λ[x �→ â]

σ̂� = σ̂ � [â �→ Â(ae, ρ̂, σ̂)]

â = �alloc(x, ς̂)

This is slightly simplified from its analogue in (��
Σ
). The definitions of e�, ρ̂�, and σ̂� are

effectively identical, but the continuation store and continuation address have been replaced

with an unbounded stack φ̂ : κ̂.

Likewise, the return transition also changes to the following.

ς̂� �� �
(ae, ρ̂, σ̂, φ̂ : κ̂) �∧

Σ
(e, ρ̂�, σ̂�, κ̂), where

φ̂ = (x, e, ρ̂κ)

ρ̂� = ρ̂κ[x �→ â]

σ̂� = σ̂ � [â �→ Â(ae, ρ̂, σ̂)]

â = �alloc(x, ς̂)

To follow a return transition, the stack must contain at least one frame. Then the appropriate

e is reinstated with the environment ρ̂ extended with an address for x. The store is extended

and whatever stack tail existed after φ̂ is the successor’s continuation κ̂.

Unbounded-state injection is defined as we would expect:

Î : Exp → Σ̂
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Î(e) � (e,∅,⊥, �)

As before, we lift (�∧

Σ
) to obtain a monotonic naïve collecting relation (�∧

S
) for a program

e0 that is defined over sets of unbounded-states:

ŝ ∈ Ŝ � P(Σ̂)

ŝ �∧

S
ŝ� � ŝ� = {ς̂ � | ς̂ ∈ ŝ ∧ ς̂ �∧

Σ
ς̂ �} ∪ {Î(e0)}

This analysis is approximate but remains incomputable because the stack can grow without

bound. Put another way, the height of the lattice (Ŝ,∪,∩) is infinite and so no finite number

of (�∧

S
)-iterations is guaranteed to obtain a fixed point.

5.2.1 Store-Widened Unbounded-Stack Analysis

As we will be comparing this unbounded-stack analysis to our new technique using precise

store-allocated continuations, we derive a global-store-widened version as before:

ξ̂ ∈ Ξ̂ � R̂× �Store [state-spaces]

r̂ ∈ R̂ � P(Ĉ) [reachable configs.]

ĉ ∈ Ĉ � Exp× �Env × �Kont [configurations]

A widened transfer function (�∧

Ξ
) is defined in terms of (�∧

Σ
) in exactly the same manner as

(��
Ξ
) was derived from (��

Σ
) except that we now have only a single global value store and

no continuation store:

(�∧

Ξ
) : Ξ̂ → Ξ̂

(r̂, σ̂) �∧

Ξ
(r̂�, σ̂�), where

ŝ = {ς̂ | (e, ρ̂, κ̂) ∈ r̂ ∧ (e, ρ̂, σ̂, κ̂) �∧

Σ
ς̂} ∪ {Î(e0)}

r̂� = {(e, ρ̂, κ̂) | (e, ρ̂, σ̂, κ̂) ∈ ŝ}

σ̂� =
�

(_,_,σ̂��,_)∈ŝ
σ̂��

5.3 Computable Approaches
5.3.1 Pushdown Control-Flow Analysis

Pushdown control-flow analysis (PDCFA) by Earl et al. (2010) is a strategy for creating

a computable equivalent to the precision of our unbounded-stack machine at a quadratic-

factor increase to the complexity class of the underlying finite analysis (e.g., monovariant or
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1-call-sensitive). This strategy tracks both reachable states (or in the store-widened case,

configurations) as well as push or pop edges between them. A quadratic blow up comes

from the fact that each pair of reachable states may have an explicitly-tracked edge between

them. These edges implicitly represent, as possible paths through the graph, the stacks

explicitly represented in the unbounded-stack machine. This graph precisely describes the

regular expression of all stacks reachable in the pushdown states of the unbounded-stack

analysis.

PDCFA formalizes a Dyck state graph for this. Where a sequence of pushes may be

repeated ad infinitum, a Dyck state graph explicitly represents a cycle of push edges and

a cycle of pop edges finitely. Broadly speaking, this is also how AAC and our adaptive

continuation allocator works, except that such cycles are represented in the store instead of

the state graph. A Dyck state graph is a state transition graph where each edge is annotated

with either a frame push, a frame pop, or an epsilon. The set of continuations for a particular

state in a Dyck state graph is determined by the pushes and pops along the paths that reach

that state.

To formalize these Dyck state graphs, we reuse some components of our unbounded-stack

machine, continuing to use hats as these machines are closely related:

ĝ ∈ Ĝ � V̂ × Ê × �Store [Dyck graph]

v̂ ∈ V̂ � P(Q) [Dyck vertices]

q̂ ∈ Q̂ � Exp× �Env [Dyck configs.]

ê ∈ Ê � P(Q̂× �Frame± × Q̂) [Dyck edges]

φ̂± ∈ �Frame± � �Frame × {push,pop} [edge actions]

For readability, we style an edge (q̂, (φ̂,push), q̂�) ∈ ê like so:

q̂
φ̂+

−→ q̂� ∈ ê

It would be too verbose to formalize all the machinery required to compute a valid

Dyck state graph. Instead, we define it from a completed unbounded-stack analysis ξ̂. The

function DSG : Ξ̂ → Ĝ produces a Dyck state graph from a fixed-point ξ̂ for (�∧

Ξ
). The

graph ĝ = DSG(ξ̂) is a valid Dyck state graph analysis for a program e0 when ξ̂ is the

unbounded-stack analysis of e0.

DSG(
ξ̂� �� �

(r̂, σ̂)) �
ĝ� �� �

(v̂, ê, σ̂),where
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v̂ = {(e, ρ̂) | (e, ρ̂, κ̂) ∈ r̂}

ê = {(e, ρ̂) φ̂+−→ (e�, ρ̂�) | (e, ρ̂, κ̂) ∈ r̂

∧ (e, ρ̂, σ̂, κ̂) �∧

Σ
(e�, ρ̂�, σ̂, φ̂ : κ̂)}

∪ {(e, ρ̂) φ̂−−→ (e�, ρ̂�) | (e, ρ̂, κ̂) ∈ r̂

∧ (e, ρ̂, σ̂, φ̂ : κ̂) �∧

Σ
(e�, ρ̂�, σ̂, κ̂)}

Although we do not formalize transition relations for Dyck state graphs themselves, it

will be helpful for us to illustrate the major source of additional complexity in engineering

a PDCFA directly. In the finite-state analysis, a transition is able to trivially compute a set

of stacks by looking up the current continuation address in the continuation store. In the

unbounded-stack analysis, a transition is able to trivially compute the stack by looking at

the final component of the state or configuration being transitioned. In a Dyck state graph,

canceling sequences of pushes and pops may place the set of topmost stack frames on edges

arbitrarily distant from the configuration q̂ being transitioned. In this way, the implicitness

of stacks in a Dyck state graph obfuscates one of the most common operations needed to

compute the analysis (i.e., stack introspection). As an example, observe how the topmost

stack frame φ̂0 for q̂3 is located elsewhere in the graph:

q̂0
φ̂+
0 �� q̂1

φ̂+
1 �� q̂2

φ̂−
1 �� q̂3

PDCFA therefore requires a nontrivial algorithm for stack introspection (Earl et al.,

2012) and extra analysis machinery overall. Specifically, PDCFA requires the inductive

maintenance of an epsilon closure graph in addition to the Dyck state graph as seen in the

following.

q̂0
φ̂+
0 �� q̂1

φ̂+
1 ��

�

��
q̂2

φ̂−
1 �� q̂3

This structure makes all sequences of canceling stack actions explicit as an epsilon edge. As

we will see, this epsilon closure graph represents unnecessary additional complexity for both

computer and analysis developer.

5.3.2 Abstracting Abstract Control

Abstracting abstract control (AAC) (Johnson and Van Horn, 2014) is another polynomial-

time method for obtaining perfect stack precision. This technique works by store-allocating

continuations using addresses unique enough to ensure no spurious merging and like PDCFA
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does not require foreknowledge of the polyvariance or context sensitivity being used in the

value store. The method is worse than PDCFA’s quadratic-factor increase in run-time

complexity. In the monovariant and store-widened case, its authors believe it to be in

O(n8) (Johnson, 2015). However, AAC makes perfect stack precision available for free in

terms of development cost (i.e., labor).

Given the parametric semantics we built up in Chapter 4, we can define AAC’s essential

strategy in a single line:

�allocκ AAC((e, ρ̃, σ̃, κ̃), e
�, ρ̃�, σ̃�) � (e�, ρ̃�, e, ρ̃, σ̃)

That is, continuations are stored at an address unique to the target state’s expression e� and

environment ρ̃� as well as the source state’s expression e, environment ρ̃, and store σ̃.

We have simplified AAC slightly and translated its notation to give this definition in the

terms of our framework. A more faithful presentation of AAC shows fundamental differences

between their framework and ours. AAC uses an eval-apply semantics and explodes each

flow set into a set of distinct states across every application. The exact address AAC

proposes using is (((λ (y) e�), ρ̃λ), �clo, σ̃) (Figure 7 in Johnson and Van Horn (2014))

where ((λ (y) e�), ρ̃λ) is the target closure of an application, �clo is one particular abstract

closure flowing to y, and σ̃ is the value store in the source state. Our components e� and

ρ̃� are isomorphic to the target closure because e� is identical and ρ̃� is produced from the

combination of ρ̃λ and y. The source state’s components (e, ρ̃, σ̃) are not as specific as
�clo and σ̃, but they do uniquely determine a flow set d̃ (the result of Ã invoked on f) that

contains �clo. However, a semantics using an eval-apply factoring like AAC is needed to

obtain a unique continuation address for every closure propagated across an application.

This would have significantly complicated our presentation of the finite-state analysis, and

in Section 5.4, we will see that being specific to �clo adds run-time complexity to an analysis

without adding any precision.

The intuition for AAC is that by allocating continuations specific to both the source

state and target state of a call-site transition, no merging may occur when returning ac-

cording to this (transition-specific) continuation-address. If we were to add some arbitrary

additional context sensitivity (e.g., 3-call-sensitivity), this information would be encoded

in ρ̃� and inherited by �allocκ AAC upon producing an address. Including this target-state

binding environment in continuation addresses is the key reason why AAC allocates precise

continuation addresses.

In Section 5.4, we will see that only the target state’s expression e� and environment ρ̃�

are truly necessary for obtaining the perfect stack precision of our unbounded-stack machine.
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Including components of the transition’s source state, its store, or its flow set only adds run-

time complexity that is unnecessary for achieving perfect stack precision. This optimization

extends AAC’s core insight to be computationally for free while remaining precise and

developmentally for free.

5.4 Perfect Stack Precision for Free
The primary intuition of our work can be illustrated by considering a set of intraproce-

dural configurations for some function invocation as in the following with c̃0 through c̃5.

c̃0 c̃1

f

c̃2 c̃3

g

c̃4 c̃5

The configuration c̃0 represents the entry point to the function, and its incoming edge is a

call-site transition. The configuration c̃5 represents an exit point for the function, and its

outgoing edge is a return-point transition. A transition where one intraprocedural configura-

tion follows another, like c̃0 → c̃1, is not technically possible in our restricted ANF language,

but in more general languages would be. The function’s body may call other functions f

and g whose configurations are not a part of the same intraprocedural set of nodes. The

primary insight behind our technique is that a set of intraprocedural configurations (like c̃0

through c̃5) necessarily share the exact same set of genuine continuations (in this example,

the incoming call-sites for c̃0).

5.4.1 An Introspective Entry-Point Allocator

We call the set of configurations c̃0 through c̃5 an intraprocedural group because they are

those configurations that represent the body of a function for a single abstract invocation—

defined by an entry point unique to some e and ρ̃. Our central insight is to notice that this

idea of an intraprocedural group also corresponds to those configurations that share a single

set of continuations. Our finite-state machine represents this set of continuations with a

continuation address, so if this continuation address is precise enough to uniquely determine

an intraprocedural group’s entry point (e and ρ̃), then it can be used for all configurations

in that same group. Thus, our allocator may be defined as simply:

�allocκ P4F((e, ρ̃, σ̃, σ̃κ, ãκ), e
�, ρ̃�, σ̃�) = (e�, ρ̃�)

The impact of this change is easily missed, belied by its simplicity. We allocate a continuation

based only on the expression and environment at the entry point of each intraprocedural
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sequence of let-forms and it is precisely reinstated when each of the calls in these let-forms

return.

Recall that the monovariant continuation allocator in our example from Section 5.1.1

resulted in return-flow merging because a single continuation address was being used for

transitions to multiple entry points of different intraprocedural groups. More generally,

return-flow merging occurs in a finite-state analysis when, at some return-point configuration

(ae, ρ̃ae , ãκ), the set of continuations for ãκ is less precise than the set of source configurations

that transition to the entry point (e, ρ̃) of the same intraprocedural group. Because we

allocate a continuation address specific to this exact entry point, and because that address

is propagated by shallowly copying it to each return point for the same intraprocedural group,

the set of continuations will be as precise as the set of source configurations transitioning

to the same entry point in all cases. This means the return-flow merging problem cannot

occur when using �allocκ P4F and neither is there a run-time overhead for stack introspection.

In Section 5.4.5, we formalize these intuitions and provide a proof that our unbounded-

stack analysis simulates (i.e., is no more precise than) a finite-state analysis when using
�allocκ P4F.

5.4.2 Analysis of Complexity

To see why this allocation scheme leads to only a constant-factor overhead, consider

a set of configurations c̃0, c̃1, · · · , c̃n that form an intraprocedural group and a set of call

sites transitioning to c̃0 with the continuations κ̃0, κ̃1, · · · , κ̃m−1. We can diagrammatically

visualize this as the following.

c̃0 c̃1 c̃n−1 c̃n

κ̃
0

κ̃1

κ̃ m
−1

...
· · ·

κ̃ 0

κ̃1

κ̃
m
−
1

...

Note that, for each call site, there is a corresponding return flow using the same continuation.

Our allocation strategy means that all of the configurations c̃0, c̃1, · · · , c̃n use the same

continuation address (e, ρ̃). The global continuation store then maps this address to the set

{κ̃0, κ̃1, · · · , κ̃m−1}.
Now consider what must be done if a new call site transitions to c0. First, the continua-

tion store must be extended to contain the continuation for this new call site, say κ̃m, in the
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continuation set at the address (e, ρ̃). Then the corresponding return edge transitions must

be added. Note that none of c̃0, c̃1, · · · , c̃n−1 need to be modified or accessed. The only work

done here beyond that of the underlying analysis is the extension of the continuation store

by adding κ̃m at (e, ρ̃) and the addition of a corresponding return edge at return points.

Thus, the additional work is a constant factor of the number of times a continuation is added

to the continuation store.

A naïve analysis might lead us to conclude that this is bounded by the product of the

number of continuation addresses and the number of continuations. However, there is a

tighter bound. Each transition adds only one continuation to the continuation store. Thus,

the work done is a constant factor of the number of transitions in the underlying analysis.

Note that this differs from AAC, which may make duplicate copies of the continuation

set for an intraprocedural group as it produces one for each combination of components

e, ρ̃, and σ̃ drawn from the source states transitioning to it. As a consequence, AAC

allocates addresses strictly more unique than the target (e�, ρ̃�) configuration. Two different

source expressions e0 and e1 may both have transitions to (e�, ρ̃�), but AAC will produce two

different target configurations c̃�0 and c̃�1 because the continuation addresses they allocate will

be distinct. This difference is maintained through the two variants of the function starting

at e� with environment ρ̃�, and when an exit point ae is reached for each, the expression and

its environment are the same and propagate the same values to two sets of continuations.

Thus, these continuation addresses and the sets of stacks they represent are kept separate

without any benefit.

PDCFA, on the other hand, is more complex for an entirely different reason: the epsilon

closure graph. Without the epsilon closure graph, PDCFA has no way to efficiently determine

a topmost stack frame at each return transition. Both our method and AAC’s method make

this trivial by propagating an address explicitly to each state. While our method allows

a continuation address to be shallowly propagated across each intraprocedural node in a

function, the epsilon closure graph recomputes a separate set of incoming epsilon edges for

every node. This means that the number of such edges for a given entry point (e, ρ̂) is the

number of callers times the number of intraprocedural nodes. This is a quadratic blow up

from the number of nodes in a finite-state model. This is why monovariant store-widened

PDCFA is in O(n6) instead of in O(n3) like traditional 0-CFA. We are able to naturally

exploit our insight that each intraprocedural node following an entry point (e, ρ̂) shares

the same set of continuations (i.e., the same epsilon edges) by propagating a pointer to

this set instead of rebuilding it for each node. PDCFA is unable to exploit this insight



84

without adding machinery to propagate only a shallow copy of an incoming epsilon edge set

intraprocedurally. It is likely that this insight could also be imported into the PDCFA style

of analysis to yield a variant of PDCFA that incurs only a constant-factor overhead, but

this would require additional machinery.

5.4.3 Constant Overhead Requires Store Widening

That no function can have two entry points that lead to the same exit point is a genuine

restriction worth discussing further. If this were not true, our technique would be precise

(assuming multiple entry points are not merged), but it would not necessarily be a constant-

factor increase in complexity. The combination of no store widening (per-state value stores)

and mutation is a good example of how this situation could arise.

To see how per-state stores can cause a further blow up in complexity, consider a function

that is called with two different continuations and two different stores. Without store

widening, each store causes a different state to be created for the entry point (e, ρ̃) of

the function. In the following diagram, for example, ς̃1 is the state for the entry point with

one store and ς̃ �1 the state for the entry point with another store.

ς̃1

ς̃ �1

ς̃2 ς̃3 ς̃4

ς̃ �2

f

ς̃ �3 ς̃ �4

κ̃
1

κ̃
2

Now suppose that along both sequences of states, there is a call to some function f and that

f contains a side effect that causes the previously different value stores to become equal.

For example, in ς̃1 perhaps the address for x maps to {#t} and in ς̃ �1 it maps to {#f}. If x

becomes bound to {#t, #f} along both paths in the body of f , the stores along both paths

would become identical.

A problem now arises. Should f return only to one state using this common store such

as ς̃3 or should it return to two different states (with identical stores) such as both ς̃3 and

ς̃ �3? Either choice has drawbacks. The semantics we have given would naturally yield the

latter option, producing two distinct states that differ only by their continuation addresses

(their original entry point). Because these states are otherwise identical, splitting κ̃1 and κ̃2
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into sets represented by two different continuation addresses results in additional transitions

and complexity without any benefit. Arguably, these continuation sets should be merged

and represented by a single address. This corresponds to the former option and could save

on run-time complexity but only at the cost of additional analysis machinery. This means

per-state stores are incompatible with our goal of obtaining perfect stack precision for free

in both senses (running time and human labor).

5.4.4 Implementation

We have implemented both our technique and AAC’s technique for analysis of a simplified

Scheme intermediate language. This language extends ANFExp with a variety of additional

core forms including conditionals, mutation, recursive binding, tail calls, and a library of

primitive operations. Our implementation was written in Scala and executed using Scala

2.11 for OSX on an Intel Core i5 (1.3 GHz) with 4GB of RAM. It is built upon the

implementation of Earl et al. (2012), which implements both traditional k-CFA and PDCFA.

The test cases we ran came from the Larceny R6RS benchmark suite (ack, cpstak, tak) and

examples compiled from the previous literature on obtaining perfect stack precision (mj09,

eta, kcfa2, kcfa3, blur, loop2, sat). As a sanity check, we have verified that both AAC and our

method produce results of equivalent precision in every case. We ran each comparison using

both a monovariant value-store allocator (Figures 5.1, 5.2, and 5.3), and a 1-call-sensitive

polyvariant allocator (Figures 5.4, 5.5, and 5.6). Across the board, our method requires

visiting strictly fewer machine configurations. In some of these cases, the difference is rather

small, but in others, it is significant. We saw as much as a 16.0× improvement in the

monovariant analysis and as much as a 10.4× improvement in the context-sensitive analysis.

The mean speedup in terms of states visited was 5.4× and 4.9× in the monovariant and

context-sensitive analyses, respectively.

5.4.5 Proof of Perfect Stack Precision

Proving soundness with respect to a concrete machine is fairly straightforward, as dis-

cussed in Chapter 3, but proving precision poses a greater challenge. To do this, we first

define a simulation relation (�Ξ) where ξ̂ �Ξ ξ̃ (read as “ ξ̂ simulates ξ̃”) if and only if all

stored values and machine configurations in ξ̃ (including stacks implicit in this configuration)

are accounted for in the unbounded-stack representation ξ̂. Usually, the next step in such a

proof would be to show that taking parallel steps preserves precision as in fallacy 4.

Fallacy 4 (Steps preserve precision). If ξ̂ �∧

Σ
ξ̂� and ξ̃ ��

Σ
ξ̃�, then ξ̂ �Ξ ξ̃ implies ξ̂� �Ξ ξ̃

�.
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Figure 5.1. Benchmarks: A monovariant comparison with AAC in terms of states.

m
j0

9

et
a

kc
fa

2

kc
fa

3

bl
ur

lo
op

2

sa
t

ac
k

cp
st

ak ta
k

0

20

40

60

80

100

120

AAC P4F

Figure 5.2. Benchmarks: A monovariant comparison with AAC in terms of configurations
(states without stores).
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Figure 5.3. Benchmarks: A monovariant comparison with AAC in milliseconds of running
time.
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Figure 5.4. Benchmarks: A 1-call-sensitive comparison with AAC in terms of states.
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Figure 5.5. Benchmarks: A 1-call-sensitive comparison with AAC in terms of configurations
(states without stores).
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Figure 5.6. Benchmarks: A 1-call-sensitive comparison with AAC in milliseconds of
running time.
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However, Fallacy 4 is not true. This is because after some finite number of steps ξ̃ may

contain a cycle in its continuation store. This means that an infinite family of successively

longer stacks must also be in ξ̂ for precision to hold. After a finite number of steps, however,

all stacks in ξ̂ are bounded by a finite length. Hence, there are stacks that precision says

should be in ξ̂ that are not.

We thus take a different approach to proving precision. Before going into the details, the

high-level overview of this proof is as follows. Instead of stepping both ξ̂ and ξ̃ in parallel, we

show that successive steps of ξ̃ are all precise relative to any ξ̂ that is already at a fixed point

(i.e., theorem 18 found at the end of this section). To show this, we need two inductions.

One is over the steps taken by ξ̃, and the other is over the stacks implied by ξ̃. To separate

these inductions, we define a well-formedness property (a binary predicate wf ) that we can

show is preserved by iterative steps from an initial ξ̃0 (Lemma 12) and for which we can

show that any well-formed ξ̃ is precise relative to any ξ̂ that is at a fixed point (Lemmas 16

and 17).

The well-formedness property is defined in terms of two additional concepts. First, we

formally define the stacks, ψ̃, implied by a continuation address, ãκ, and continuation store,

σ̃κ, in terms of a relation ψ̃ ∈ψ ãκ (via σ̃κ) that we define. Then, we define paths, (
∧

�→)

and (
�
�→), through ξ̂ and ξ̃ in terms of a sequence of state steps, (�∧

Σ
) and (��

Σ
), between

states represented by configurations in ξ̂ and ξ̃. This allows us to prove the precision of any

well-formed ξ̃ (i.e., Lemma 17) through a logical chain informally shown in Figure 5.7. In

Lemma 13, we show that for any configuration (e, ρ̃, ãκ) in the r̃ of a ξ̃ and any ψ̃ implied by

aκ with the continuations store σκ of ξ̃, there exists a path from the initial configuration c̃0

with an empty stack � to the configuration (e, ρ̃, ãκ) with the implied stack ψ̃. In Lemma 14,

we then show that there exists a corresponding path in ξ̂ from ĉ0 to (e,HEnv(ρ̃), HKont(ψ̃)).

Finally, in Lemma 15, we show that the endpoint of that path is in ξ̂ and thus ξ̃ is precise

for ξ̂ (Lemma 17).

(c̃0, �)
�
�→ ((e, ρ̃, ãκ), ψ̃)

(e, ρ̃, ãκ) ∈ r̃

ψ̃ ∈ψ ãκ (via σ̃κ)

ĉ0
∧

�→ (e,HEnv(ρ̃), HKont(ψ̃)) (e,HEnv(ρ̃), HKont(ψ̃)) ∈ r̂

Lemma 13

Lemma 14

Lemma 15
Lemma 17

Figure 5.7. The logical chain followed by our proof of perfect precision.
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5.4.5.1 Preliminaries

In order to prove precision, we first require that the address spaces for both σ̂ and σ̃

correspond as follows.

Assumption 5 (Address equivalence). There exists an equivalence (≡Addr) between finite-

state-machine addresses (�Addr) and unbounded-stack-machine addresses (�Addr) that can be

decomposed into a bijection �Addr
TAddr�
HAddr

�Addr .

From this, we can define conversion bijections for most, both not all, components:

TEnv(ρ̂) � λx.TAddr(ρ̂(x)) HEnv(ρ̃) � λx.HAddr(ρ̃(x))

TClo((lam, ρ̂)) � (lam, TEnv(ρ̂)) HClo((lam, ρ̃)) � (lam,HEnv(ρ̃))

TD(d̂) � {TClo(�clo) | �clo ∈ d̂} HD(d̂) � {HClo(�clo) | �clo ∈ d̃}

TStore(σ̂) � λã.TD(σ̂(HAddr(ã))) HStore(σ̃) � λâ.HD(σ̃(TAddr(â)))

TFrame((x, e, ρ̂)) � (x, e, TEnv(ρ̂)) HFrame((x, e, ρ̃)) � (x, e,HEnv(ρ̃))

Lemma 6 (Bijection). For all τ̂ and τ̃ , Tτ and Hτ form a bijection, �τ Tτ�
Hτ

�τ .

Proof. By unfolding and simplification.

Likewise, we have equivalences (≡Env, ≡Frame, ≡Clo) and precision relations (�Ξ, �Store,

�R, �D, �Store) for all the components of our machine. These relations have the following

signatures:

(�Ξ) ⊆ Ξ̂× Ξ̃ [state-space precision]

(�Store) ⊆ �Store × �Store [store precision]

(�R) ⊆ R̂× R̃× �KStore [reachable configs. precision]

(≡Env) ⊆ �Env × �Env [env. equivalence]

(≡Frame) ⊆ �Frame × �Frame [frame equivalence]

(�D) ⊆ D̂ × D̃ [flow-set precision]

(≡Clo) ⊆ �Clo × �Clo [closure equivalence]

Note that (�R) is a trinary relation because finite-machine configurations are only meaningful

in the context of a continuation store.

In addition, with the following assumption, we require that the value allocators respect

the address correspondence.
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Assumption 7 (Allocation equivalence). If ρ̂ ≡Env ρ̃, σ̂ �Store σ̃, and ψ̃ ∈ψ ãκ (via σ̃κ), then:

�alloc(x, (e, ρ̂, σ̂, HKont(ψ̃))) ≡Addr
�alloc(x, (e, ρ̃, σ̃, σ̃κ, ãκ))

This assumption uses (∈ψ) and HKont which deal with the stacks implied by an address

and continuation store. We define an implicit stack as an unbounded list of finite-state

continuations κ̃:

ψ̃ ∈ Ψ̃ = �Kont
∗

[implicit stack]

These ψ̃ are an intermediate representation in that, like κ̂, their structure is unbounded,

but the values in them are taken from the finite-state machine. We define a trinary relation

(∈ψ) that specifies which ψ̃ are implied by an ãκ in σ̃κ. This has the following base case:

� ∈ψ ãhalt (via σ̃κ)

and inductive case:

(φ̃, ã�κ) ∈ σ̃κ(ãκ) ∧ ψ̃ ∈ψ ã�κ (via σ̃κ) ∧ ãκ �= ãhalt

=⇒ ((φ̃, ã�κ) : ψ̃) ∈ψ ãκ (via σ̃κ)

Note that there were a few inversion properties here which needed to be formalized for

mechanization. For example, the left-hand side of (∈ψ) is � if and only if the right-hand side

is ãhalt. Likewise, the converse of the inductive case also holds.

Then given such a ψ̃, we can directly construct its equivalent unbounded stack:

HKont(�) � � HKont((φ̃, ãκ) : ψ̃) � HFrame(φ̃) : HKont(ψ̃)

Also, given a finite-state configuration c̃ and an implicit stack ψ̃, we can construct an

unbounded-stack configuration ĉ:

HC((e, ρ̃, ãκ), ψ̃) � (e,HEnv(ρ̃), HKont(ψ̃))

Now we can define relations for comparing the precision of components across these

machines:

â ≡Addr ã � â = HAddr(ã)

ρ̂ ≡Env ρ̃ � dom(ρ̂) = dom(ρ̃) ∧ ∀x ∈ dom(ρ̃). ρ̂(x) ≡Addr ρ̃(x)

(lam, ρ̂) ≡Clo (lam, ρ̃) � ρ̂ ≡Env ρ̃

(x, e, ρ̂) ≡Frame (x, e, ρ̃) � ρ̂ ≡Env ρ̃

d̂ �D d̃ � ∀�clo ≡Clo
�clo. �clo ∈ d̃ =⇒ �clo ∈ d̂

σ̂ �Store σ̃ � ∀â ≡Addr ã. σ̂(â) �D σ̃(ã)
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As throughout, the use of a symbol twice in an above definition (e.g. x in ≡Frame) indicates

these components are exactly equal. The precision of analysis results and sets of reachable

configurations are then defined like so:

r̂ �R r̃ (via σ̃κ) � ∀(e, ρ̃, ãκ) ∈ r̃. ∀ψ̃ ∈ψ ãκ (via σ̃κ). HC((e, ρ̃, ãκ), ψ̃) ∈ r̂

(r̂, σ̂) �Ξ (r̃, σ̃, σ̃κ) � σ̂ �Store σ̃ ∧ r̂ �R r̃ (via σ̃κ)

Lemma 8 (Correspondence of bijection and precision). For addresses, environments, clo-

sures, frames, τ̂ and τ̃ , we have the following properties:

τ̂ ≡τ τ̃ ⇐⇒ τ̂ = Hτ (τ̃)

τ̂ ≡τ τ̃ ⇐⇒ τ̃ = Tτ (τ̂)

Proof. By unfolding, simplification, the address bijection, and functional extensionality of

environments.

Lemma 9 (Correspondence of conversion and precision for flow-sets). For all d̂ and d̃, we

have the following properties:

HD(d̃) �D d̃

d̂ �D TD(d̂)

Proof. By unfolding, simplification, and Lemma 8.

Lemma 10 (Correspondence of conversion and precision for stores). For all σ̂ and σ̃, we

have the following properties:

HStore(σ̃) �Store σ̃

σ̂ �Store TStore(σ̂)

Proof. By unfolding, simplification, Lemma 8, and Lemma 9.

5.4.5.2 Paths and Well-formedness

Now we define a few variants of the state step relations (��
Σ
) and (�∧

Σ
). These sub-store

step relations allow the actual store reached across the transition to be an intermediate
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point, no greater than the store given. The unbounded-stack sub-store step relation (
�
�∧

Σ
) is

defined:

(e, ρ̂, σ̂, κ̂)
�
�∧

Σ
(e�, ρ̂�, σ̂�, κ̂�),where

(e, ρ̂, σ̂, κ̂) �∧

Σ
(e�, ρ̂�, σ̂��, κ̂�)

σ̂�� � σ̂�

A finite-state sub-store step relation (
���

Σ
) is defined:

(e, ρ̃, σ̃, σ̃κ, ãκ)
�
��

Σ
(e�, ρ̃�, σ̃�, σ̃�

κ, ã
�
κ),where

(e, ρ̃, σ̃��, σ̃��
κ, ãκ) ��

Σ
(e�, ρ̃�, σ̃���, σ̃���

κ , ã
�
κ)

(σ̃�� � σ̃) ∧ (σ̃��� � σ̃�) ∧ (σ̃��
κ � σ̃κ) ∧ (σ̃���

κ � σ̃�
κ)

For ease in defining our forthcoming well-formedness properties, we also define two variants

of this finite-state sub-store step relation which each additionally constrain the values added

to the store. A variant requires a particular address (ã) to be extended with a particular

closure (�clo):

(e, ρ̃, σ̃, σ̃κ, ãκ)
�
��

Σ
(e�, ρ̃�, σ̃�, σ̃�

κ, ã
�
κ) (with ã, �clo),where

(e, ρ̃, σ̃��, σ̃��
κ, ãκ) ��

Σ
(e�, ρ̃�, σ̃���, σ̃���

κ , ã
�
κ)

(σ̃�� � σ̃) ∧ (σ̃��� � σ̃�) ∧ (σ̃��
κ � σ̃κ) ∧ (σ̃���

κ � σ̃�
κ) ∧ �clo ∈ σ̃���(ã)

Another variant requires a particular address (ã��κ) to be extended with a particular contin-

uation (�κ):

(e, ρ̃, σ̃, σ̃κ, ãκ)
�
��

Σ
(e�, ρ̃�, σ̃�, σ̃�

κ, ã
�
κ) (with κ̃, ã��κ),where

(e, ρ̃, σ̃��, σ̃��
κ, ãκ) ��

Σ
(e�, ρ̃�, σ̃���, σ̃���

κ , ã
�
κ)

(σ̃�� � σ̃) ∧ (σ̃��� � σ̃�) ∧ (σ̃��
κ � σ̃κ) ∧ (σ̃���

κ � σ̃�
κ) ∧ κ̃ ∈ σ̃���

κ (ã
��
κ)

With these, we define a relation for paths between configurations within the unbounded-

stack machine. Paths of length zero exist trivially:

(e, ρ̂, κ̂)
∧

�→ (e, ρ̂, κ̂) (via r̂, σ̂),where

(e, ρ̂, κ̂) ∈ r̂

An existing path can be extended to a longer path where a further sub-store step exists:

(e, ρ̂, κ̂)
∧

�→ (e�, ρ̂�, κ̂�) (via r̂, σ̂),where

(e, ρ̂, κ̂)
∧

�→ (e��, ρ̂��, κ̂��) (via r̂, σ̂)

(e��, ρ̂��, σ̂, κ̂��)
�
�∧

Σ
(e�, ρ̂�, σ̂, κ̂�)
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Similarly, we define a relation for paths between configurations within the finite-state

machine. The end points of such paths are unique to both a configuration, and an implicit

stack. Again, paths of length zero exist trivially:

((e, ρ̃, ãκ), ψ̃)
�
�→ ((e, ρ̃, ãκ), ψ̃) (via ξ̃, (r̃�, σ̃�, σ̃�

κ)),where

(e, ρ̃, ãκ) ∈ r̃�

ψ̃ ∈ψ ãκ (via σ̃�
κ)

Paths may be extended with a sub-store return step to form a longer path:

((e, ρ̃, ãκ), ψ̃)
�
�→ ((e�, ρ̃�κ, ã

�
κ), ψ̃

�) (via (r̃, σ̃, σ̃κ), (r̃�, σ̃�, σ̃�
κ)),where

ρ̃�κ = ρ̃κ[x �→ �alloc(x, (ae, ρ̃��, σ̃, σ̃κ, ã��κ))]

(ae, ρ̃��, ã��κ) ∈ r̃

(e�, ρ̃�κ, ã
�
κ) ∈ r̃�

((x, e�, ρ̃κ), ãκ) ∈ σ̃κ(ã
��
κ)

((e, ρ̃, ãκ), ψ̃)
�
�→ ((ae, ρ̃��, ã��κ), ((x, e

�, ρ̃κ), ãκ) : ψ̃�) (via (r̃, σ̃, σ̃κ), (r̃�, σ̃�, σ̃�
κ))

(ae, ρ̃��, σ̃, σ̃κ, ã��κ)
�
��

Σ
(e�, ρ̃�κ, σ̃

�, σ̃�
κ, ã

�
κ)

Paths may be extended with a sub-store call step to form a longer path:

((e, ρ̃, ãκ), ψ̃)
�
�→ ((e�, ρ̃�, ã�κ), ((x, e

��, ρ̃��), ã��κ) : ψ̃
�) (via (r̃, σ̃, σ̃κ), (r̃�, σ̃�, σ̃�

κ)),where

((e, ρ̃, ãκ), ψ̃) ∈ r̃

((x, e��, ρ̃��), ã��κ) ∈ σ̃�
κ(ã

�
κ)

((e, ρ̃, ãκ), ψ̃)
�
�→ (((let ([x (f ae)]) e��), ρ̃��, ã��κ), ψ̃

�) (via (r̃, σ̃, σ̃κ), (r̃�, σ̃�, σ̃�
κ))

((let ([x (f ae)]) e��), ρ̃��, σ̃, σ̃κ, ã��κ)
�
��

Σ
(e�, ρ̃�, σ̃�, σ̃�

κ, ã
�
κ)

This (
�
�→) relation adds extra side conditions that ensure invariants needed in our proof.

Now we define well-formedness, a predicate defined in terms of several sub-properties.

Well-formedness (wf ) is a binary predicate with the first argument ξ̃ being the predecessor

of the second argument ξ̃�, which is the result we say is well-formed:

wf (ξ̃, ξ̃�) � wf ξ̃(ξ̃, ξ̃
�) ∧ wf �(ξ̃, ξ̃

�) ∧ wf init(ξ̃, ξ̃
�) ∧ wf halt(ξ̃, ξ̃

�)

∧wf r̃(ξ̃, ξ̃�) ∧ wf σ̃(ξ̃, ξ̃
�) ∧ wf σ̃κ

(ξ̃, ξ̃�)

The wf ξ̃ property requires that ξ̃ be well-formed and the predecessor of ξ̃�:

wf ξ̃(ξ̃, ξ̃
�) � (ξ̃ = ξ̃� = ({(e0,∅, ãhalt)},⊥,⊥))

∨ (ξ̃ ��
Ξ
ξ̃� ∧ ∃ξ̃��. wf (ξ̃��, ξ̃))
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The wf � property requires that ξ̃� be component-wise greater than or equal to ξ̃:

wf �((r̃, σ̃, σ̃κ), (r̃
�, σ̃�, σ̃�

κ)) � (r̃ ⊆ r̃�) ∧ (σ̃ � σ̃�) ∧ (σ̃κ � σ̃�
κ)

The wf init property requires that the initial configuration be in ξ̃�:

wf init(ξ̃, (r̃
�, σ̃�, σ̃�

κ)) � (e0,∅, ãhalt) ∈ r̃�

The wf halt property requires that the halt-continuation address ahalt not have any continu-

ations associated with it:

wf halt(ξ̃, (r̃
�, σ̃�, σ̃�

κ)) � ∀κ̃. κ̃ /∈ σ̃�
κ(ãhalt)

Finally, wf r̃, wf σ̃, and wf σ̃κ
ensure that everything in the r̃, σ̃, and σ̃κ for ξ̃� has a reason

to be there. For wf r̃, this means that every element of r̃ has some path leading to it:

wf r̃(ξ̃, (r̃
�, σ̃�, σ̃�

κ)) �

∀(e, ρ̃, ãκ) ∈ r̃�. ∃ψ̃ ∈ψ ãκ (via σ̃�
κ).

((e0,∅, ãhalt), �)
�
�→ ((e, ρ̃, ãκ), ψ̃) (via ξ̃, (r̃�, σ̃�, σ̃�

κ))

For wf σ̃, this means that every value stored in σ̃ has some sub-store step (
���

Σ
) that put it

there:

wf σ̃((r̃, σ̃, σ̃κ), (r̃
�, σ̃�, σ̃�

κ)) �

∀ã. ∀�clo ∈ σ̃�(ã). ∃(e, ρ̃, ãκ) ∈ r̃. ∃(e�, ρ̃�, ã�κ) ∈ r̃�.

(e, ρ̃, σ̃, σ̃κ, ãκ)
�
��

Σ
(e�, ρ̃�, σ̃�, σ̃�

κ, ã
�
κ) (with ã, �clo)

For wf σ̃κ
this means that every value stored in σ̃κ has some sub-store step (

���
Σ
) that put it

there:

wf σ̃κ
((r̃, σ̃, σ̃κ), (r̃

�, σ̃�, σ̃�
κ)) �

∀ã�κ. ∀((x, e, ρ̃κ), ãκ) ∈ σ̃�
κ(ã

�
κ).

Entry(ã�κ)� �� �
(e�κ, ρ̃

�
κ, (e

�
κ, ρ̃

�
κ)) ∈ r̃�

∧ ∃f. ∃ae. ((let ([x (f ae)]) e), ρ̃κ, ãκ) ∈ r̃

∧ ((let ([x (f ae)]) e), ρ̃κ, σ̃, σ̃κ, ãκ)
�
��

Σ
(e�κ, ρ̃

�
κ, σ̃

�, σ̃�
κ, ã

�
κ) (with ã�κ, ((x, e, ρ̃κ), ãκ))
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For wf σ̃κ
and our lemmas below, we define a helper Entry , which maps a continuation

address to the configuration that is the entry point for the function invocation that contains

the configurations using that continuation address:

Entry : �Addr → C̃

Entry(ãhalt) � (e0,∅, ãhalt)

Entry((eκ, ρ̃κ)) � (eκ, ρ̃κ, (eκ, ρ̃κ))

Finally, with the following assumption, we require that once allocation creates an address,

it must always produce the same address for the same configuration even if the value or

continuation stores have changed.

Assumption 11 (Allocation consistency). If wf (ξ̃, (r̃, σ̃, σ̃κ)), and the state step

(e, ρ̃, σ̃, σ̃κ, ãκ) ��
Σ
(e�, ρ̃�[x �→ ã], σ̃��, σ̃��

κ, ã
�
κ) holds where ã = �alloc(x, (e, ρ̃, σ̃, σ̃κ, ãκ)) and

there is a result step (r̃, σ̃, σ̃κ) ��
Ξ
(r̃�, σ̃�, σ̃�

κ), then the corresponding allocation for e, ρ̃, and

ãκ, but with σ̃� and σ̃�
κ, is the same:

�alloc(x, (e, ρ̃, σ̃�, σ̃�
κ, ãκ)) = ã

5.4.5.3 Central Lemmas and Theorems

To start our proof, Lemma 12 shows that iterated steps produce well-formed ξ̃.

Lemma 12 (Well-formedness of analysis results). If ξ̃� is the result of taking zero or more

steps of (��
Ξ
), starting from the initial result, ({(e0,∅, ãhalt)},⊥,⊥), then wf (ξ̃, ξ̃�).

Proof. We induct over steps. In the base case, we can easily show that the initial result is

well-formed. We can also show that for any ξ̃� ��
Ξ
ξ̃��, if wf (ξ̃, ξ̃�) then wf (ξ̃�, ξ̃��). This is

done using sublemmas for the components of well-formedness. We omit these for space.

Next, with Lemma 13, we show that every configuration paired with one of its implied

stacks has a path leading to it (i.e., the top edge of Figure 5.7).

Lemma 13 (Stacks have paths). If (e, ρ̃, ãκ) ∈ r̃ such that wf (ξ̃, (r̃, σ̃, σ̃κ)), then:

∀ψ̃ ∈ψ ãκ (via σ̃κ).

((e0,∅, ãhalt), �)
�
�→ ((e, ρ̃, ãκ), ψ̃) (via ξ̃, (r̃, σ̃, σ̃κ))

Proof. By wf r̃(ξ̃, (r̃, σ̃, σ̃κ)), there is some ψ̃� ∈ψ ãκ (via σ̃κ) for which ((e0,∅, ãhalt), �)
�
�→

((e, ρ̃, ãκ), ψ̃
�) (via ξ̃, (r̃, σ̃, σ̃κ)). However, this path uses ψ̃� instead of our desired ψ̃. Thus,
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we induct over ψ̃. If ψ̃ is the empty list, �, then ãκ must be ãhalt and thus � is the only ψ̃

for which ψ̃ ∈ψ ãκ (via σ̃κ). So ψ̃� = ψ̃ = �, and the path obtained from wf r̃(ξ̃, (r̃, σ̃, σ̃κ))

equals our desired conclusion.

If ψ̃ is ((x, eκ, ρ̃κ), ã
�
κ) : ψ̃� for some x, eκ, ρ̃κ, ã�κ, ψ̃�, then by the path obtained from

wf r̃(ξ̃, (r̃, σ̃, σ̃κ)), there exists a path for ψ̃ from Entry(ãκ) to (e, ρ̃, ãκ):

(Entry(ãκ), ψ̃)
�
�→ ((e, ρ̃, ãκ), ψ̃) (via ξ̃, (r̃, σ̃, σ̃κ))

By wf r̃(ξ̃, (r̃, σ̃, σ̃κ)), there exist f and ae for a call site ((let ([x (f ae)]) eκ), ρ̃κ, ã�κ) ∈ r̃

and a step from that call site to Entry(ãκ):

((let ([x (f ae)]) eκ), ρ̃κ, σ̃, σ̃κ, ã�κ)
�
��

Σ
(e�, ρ̃�, σ̃, σ̃κ, ãκ)

where (e�, ρ̃�, ãκ) = Entry(ãκ)

By the induction hypothesis, we have a path for ψ̃� from (e0,∅, ãhalt) to the call site:

((e0,∅, ãhalt), �)
�
�→ (((let ([x (f ae)]) eκ), ρ̃κ, ã�κ), ψ̃

�)

We now have a path from ((e0,∅, ãhalt), �) to the call site with ψ̃�, a step from the call site

to Entry(ãκ) that pushes (x, eκ, ρ̃κ) onto the stack, and a path from Entry(ãκ) to (e, ρ̃, ãκ)

with ψ̃. From these, we can then construct the path desired in our conclusion.

Next, with Lemma 14, we show that every path in a well-formed ξ̃ has a corresponding

path in any ξ̂ that is at at fixed point (i.e., the left edge of Figure 5.7).

Lemma 14 (Path conversion). If (e, ρ̃, ãκ) ∈ r̃ such that wf (ξ̃, (r̃, σ̃, σ̃κ)) and

(r̂, σ̂) �∧

Ξ
(r̂, σ̂), then:

((e0,∅, ãhalt), �)
�
�→ ((e, ρ̃, ãκ), ψ̃) (via ξ̃, (r̃, σ̃, σ̃κ))

=⇒ (e0,∅, �)
∧

�→ HC((e, ρ̃, ãκ), ψ̃) (via r̂, σ̂)

Proof. By induction over the finite-state path. We have three cases.

Case: The path is empty. Trivial.

Case: The last step of the path is a return. For some ae, ρ̃�, ãκ, and ρ̃��, there is a step

(ae, ρ̃�, σ̃, σ̃κ, ã�κ)
���

Σ
(e, ρ̃, σ̃, σ̃κ, ãκ) and, by the induction hypothesis, a path:

(e0,∅, �)
∧

�→ HC((ae, ρ̃
�, ã�κ), ((x, e, ρ̃

��), ãκ) : ψ̃) (via r̂, σ̂)
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where ρ̃ = ρ̃��[x �→ �alloc(x, (ae, ρ̃�, σ̃, σ̃κ, ã�κ))]

We can then show that (r̂, σ̂) contains a step corresponding to the step in (r̃, σ̃, σ̃κ):

(ae, HEnv(ρ̃
�), σ̂, (x, e,HEnv(ρ̃

��)) : HKont(ψ̃))

�
��

Σ
(e,HEnv(ρ̃), σ̂, HKont(ψ̃))

Combining this with the path from the induction hypothesis, we can then construct the

path in our conclusion.

Case: The last step of the path is a call. For some ae, ρ̃�, ãκ, and ρ̃��, we have (y, e, ρ̃λ) ∈
Ã(f, ρ̃�, σ̃), and there is a step:

((let ([x (f ae)]) e�), ρ̃�, σ̃, σ̃κ, ã�κ)
�
��

Σ
(e, ρ̃, σ̃, σ̃κ, ãκ), where

ρ̃ = ρ̃λ[x �→ �alloc(x, ((let ([x (f ae)]) e�), ρ̃�, σ̃, σ̃κ, ã�κ))]

and, by the induction hypothesis, a path:

(e0,∅, �)
∧

�→ HC(((let ([x (f ae)]) e�), ρ̃�, ã�κ), ψ̃) (via r̂, σ̂)

We can then show that (r̂, σ̂) contains a step corresponding to the step in (r̃, σ̃, σ̃κ):

((let ([x (f ae)]) e�), HEnv(ρ̃
�), σ̂, HKont(ψ̃))

�
��

Σ
(e,HEnv(ρ̃), σ̂, (x, e

�, HEnv(ρ̃
�)) : HKont(ψ̃))

Combining this with the path from the induction hypothesis, we can then construct the

path in our conclusion.

Then, with Lemma 15, we show that the endpoint of any path in ξ̂ is in ξ̂ (i.e., the

bottom edge of Figure 5.7).

Lemma 15 (Path endpoint). If (r̂, σ̂) �∧

Σ
(r̂, σ̂), then for any path ĉ0

∧

�→ (e, ρ̂, κ̂) (via r̂, σ̂),

we have: (e, ρ̂, κ̂) ∈ r̂.

Proof. Trivial. By induction.

Finally, with Lemmas 16 and 17, we show that precision is preserved by the step relation

��
Σ

(i.e., the right edge of Figure 5.7). Then in theorem 18, we show that these are all

precise, which is ultimately what we want to prove.
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Lemma 16 (Preservation of precision for value stores). If (r̂, σ̂) �∧

Ξ
(r̂, σ̂), wf (ξ̃, (r̃, σ̃, σ̃κ)),

(r̃, σ̃, σ̃κ) ��
Ξ
(r̃�, σ̃�, σ̃�

κ), and (r̂, σ̂) �Ξ (r̃, σ̃, σ̃κ), then σ̂ �Store σ̃
�.

Proof. Omitted for space.

Lemma 17 (Preservation of precision for reachable configurations). If (r̂, σ̂) �∧

Ξ
(r̂, σ̂),

wf (ξ̃, (r̃, σ̃, σ̃κ)), (r̃, σ̃, σ̃κ) ��
Ξ
(r̃�, σ̃�, σ̃�

κ), and (r̂, σ̂) �Ξ (r̃, σ̃, σ̃κ), then r̂ �Store r̃
�.

Proof. If we unfold the definition of (�R), we must show that for all (e, ρ̂, κ̂) ∈ r̂� and

ψ̃ ∈ψ ãκ (via σ̃�
κ), that (e,HEnv(ρ̃), HKont(ψ̃)) ∈ r̂. By Lemma 13, we have:

((e0,∅, ãhalt), �)
�
�→ ((e, ρ̃, ãκ), ψ̃) (via ξ̃, (r̃, σ̃, σ̃κ))

From this, by Lemma 14, we have:

(e0,∅, �)
∧

�→ (e,HEnv(ρ̃), HKont(ψ̃)) (via r̂, σ̂)

Finally, by Lemma 15, we have our conclusion.

Theorem 18 (Precision of analysis results). If ξ̃ is the result of taking zero or more steps

of (��
Ξ
), starting from ({(e0,∅, ãhalt)},⊥,⊥), and ξ̂ �∧

Ξ
ξ̂, then ξ̂ �Ξ ξ̃.

Proof. By induction over the number of steps, trivial simplifications, unfoldings, and Lem-

mas 12, 16, and 17.



CHAPTER 6

IMPLEMENTATION STRATEGIES

This chapter explores strategies for more efficiently implementing the static analyses

being discussed.

Some recent work has shown that very simple static analyses can be encoded as a series

of fast matrix operations (Prabhu et al., 2010) and may be possible to extend to larger scale

static analysis on the GPU. Other recent work shows how to implement an inclusion-based

points-to analysis of C on the GPU by applying a set of semantic rules to the adjacency

matrix of a sparse-graph (Mendez-Lojo et al., 2012). Both of these algorithms may be likened

to finding the transitive closure of a graph encoded as an adjacency matrix. The matrix is

repeatedly extended with new entries derived from sparse matrix-vector multiply (SpMV)

until a fixed point is reached (no more edges need to be accumulated). These approaches

to static analysis on the GPU are very different; both, however, require performant sparse-

matrix operations and dynamic insertion of new entries.

6.1 General-Purpose GPU Programming
GPUs have become increasingly popular in recent years for solving computationally

intense problems outside of graphics processing (Owens et al., 2007). The FLOP throughput

on GPUs has continued to increase exponentially, significantly outpacing CPUs. Many

high-performance computers now rely on the GPU as a work-horse for the computationally

demanding linear-algebra which is often needed in large-scale scientific and engineering

applications. For example, Cray’s Titan supercomputer, the first machine to surpass 10

PFLOPS, uses 18,688 K20x Nvidia GPUs to accelerate its workload (Oak Ridge National

Lab, 2016).

GPUs achieve their performance due to the use of a streaming SIMD (single-instruction,

multiple-data) architecture which allows a group of small lightweight cores to perform the

same operation on a vector of data and is ideal for certain tasks such as graphics and linear-

algebra. This fine-grained parallelism within a streaming multiprocessor (SM) is constrained
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to threads which operate in lock-step, but may be combined with coarser-grained parallelism

from concurrent program execution across multiple SMs. Modern GPUs can have dozens of

SMs and a combined total of several thousand concurrent threads. Within each SM, it is

crucial that threads remain in lock-step, operating on the same instructions. In the CUDA

programming model, thread divergence occurs when a branch instruction separates a group

of threads into different control-flow paths. This causes threads on one path to continue

while the others wait to run sequentially and is disastrous for performance.

With the addition of soldered memory, GPUs are also able to attain a significantly higher

memory bandwidth than that of traditional CPUs. This is particularly important for our

application as static analyses are typically memory-bound problems that involve largely data

movement and manipulations of data structures rather than of data itself.

6.2 Extending EigenCFA
EigenCFA is a preliminary attempt at implementing static analysis as highly parallel

matrix operations (Prabhu et al., 2010). It derives a rather clever encoding of 0-CFA as

linear algebra which is efficient to perform on throughput-oriented hardware such as SIMD

architectures like the GPU. Unfortunately, it is restricted by its need to encode the entire

analysis as a single GPU kernel. This restriction has made it impossible to encode an analysis

of simple language features like primitive operations and conditions. The presence of an

addition operation or branch places even trivial programs outside the ability of EigenCFA

to handle efficiently. In addition, EigenCFA is less precise than it should be as it uses the

trivially sound approximation for control-flow behavior. Consider the following sample taken

from a larger program where f, g, and h are unreachable functions.

(define (f x) (h x 0))

(define (g) (h 0 0))

Proving that these are in-fact unreachable requires a precise control-flow analysis. EigenCFA

models only data-flow and assumes the reachability of all expressions in a program. Because

of this, the call sites (h 0 0) and (h x 0) will be examined and their data-flows propagated.

As x is unbound, even after handling propagations for (h x 0), the corresponding formal

parameter for h will remain unbound. An unbound variable is an implicit indication that a

function (in this case h) is in-fact unreachable. In this case, an approximation of data-flow

has resulted in a bound on control-flow, but this cannot be relied on to give the same

precision as a traditional 0-CFA which models control explicitly. Because the call site in g

applies h on two constant values, once the analysis is complete, it will appear that h may
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be reachable as possible values will have been found for both its parameters. Our linear

encoding solves this problem by explicitly modeling both the control-flow and data-flow

aspects of a program.

In this section, we review EigenCFA’s approach to encoding static analyses as well as

present a novel improvement which allows the essential strategy to be extended to real-world

analyses with a variety of heterogenous semantic rules. We introduce a concrete and abstract

semantics for a Scheme intermediate-representation, and derive a linear encoding for 0-CFA.

Our encoding has been implemented both as a single-threaded CPU version and as single-

stream and multistream GPU versions. All these have been tested for correctness against

a standard worklist implementation and produce identical results for a suite of Scheme

benchmarks. While the optimization effort is ongoing, preliminary results are promising,

showing potential speedups of 20x or better over a single-threaded version of the encoding.

6.2.1 0-CFA of a Scheme-Like IR

We perform a structural abstraction bounding the machine’s address-space to obtain a

computable approximation of our concrete semantics. Notice that our abstract semantics

contains several fundamental changes from its concrete counterpart. 0-CFA bounds the

address-space to include exactly one address for each variable (monovariance). All values

bound to a variable x in any context therefore must be represented by a single address.

This introduces merging between values in our store and nondeterminism in the transition

relation.

To define an abstract operational semantics, we again need an abstract machine and a

transition relation (≈>) which matches up successors and predecessors within the machine’s

configuration-space. As we are effectively re-using an empty timestamp for every allocation,

expressions will uniquely identify an environment mapping free-variables to themselves and

the store may directly map variables x̂ to sets of abstract values v̂. Such a flow-set may

indicate a range of possible concrete values for an address. Closures are now just lambdas.

ς̂ ∈ �Σ = E× �Store

σ̂ ∈ �Store = �V ar → �V alues

v̂ ∈ �V alues = P(�V alue)

d̂ ∈ �V alue = Lam+ �Basic

�Basic = {TRUE, FALSE, VOID, INT, . . .}

Program constants map to their corresponding basic values. When performing a concrete
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interpretation, these values are precise. When performing our abstract interpretation, there

should only be a finite number of abstract basic values so they can be enumerated in our

forthcoming encoding. For constant propagation, a set of program locations may be used.

We use the notation α below to informally indicate the abstraction function a fully defined

Galois-connection would employ to map a concrete machine component to its most precise

abstract representative. For example, α(−3) could yield NEG.

The abstract atomic-expression evaluator returns flow-sets v̂.

Â : AE× �Σ � �V alues

Â(x, (e, σ̂)) = σ̂(x)

Â(lam, (e, σ̂)) = {lam}

Â(c, ς̂) = {α(c)}

We also need an abstract prim-op evaluator δ̂ which maps a primitive operation op and list

of flow-sets to a sound result. For example, δ̂(+, ({POS}, {POS})) = {POS}.

δ̂ : OP× �V alues
∗
� �V alues

A call site has one successor for each closure that accepts a matching number of arguments

indicated by the flow-set for aef (the atomic-expression in call position).

(λ (x1 . . . xj) e) ∈ Â(aef , ς̂)

((aef ae1 . . . aej), σ̂)� �� �
ς̂

≈> (e, σ̂�)

where σ̂� = σ̂ � [xi �→ Â(aei, ς̂)]

Control moves inside the body of all invoked closures e. The updated store is now conser-

vatively approximated by finding the least-upper-bound of the current store and each new

binding. Stores are ordered point-wise by inclusion, i.e., (σ̂1 � σ̂2)(â) = σ̂1(â) ∪ σ̂2(â).

Mutation is succeeded by a state for each possible continuation.

(λ (xk) e) ∈ Â(aek, ς̂)

((set! x aev aek), σ̂)� �� �
ς̂

≈> (e, σ̂�)
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where σ̂� = σ̂ � [xk �→ {VOID}]

� [x �→ Â(aev, ς̂)]

In addition, to conservatively simulate mutation of the variable x, all flows indicated for aev

are included along with all previous values.

(λ (xk) e) ∈ Â(aek, ς̂)

((prim op ae1 . . . aej aek), σ̂)� �� �
ς̂

≈> (e, σ̂�)

where σ̂� = σ̂ � [xk �→ v̂k]

v̂k = δ(op, (Â(ae1, ς̂) . . . Â(aej , ς̂)))

Primitive operations use δ̂ to obtain an approximation of the return value and propagate

this flow-set v̂k to each continuation indicated for aek.

v̂ ∈ Â(ae, ς̂) v̂ �= FALSE

((if ae et ef), σ̂)� �� �
ς̂

≈> (et, σ̂)

v̂ ∈ Â(ae, ς̂) v̂ = FALSE

((if ae et ef), σ̂)� �� �
ς̂

≈> (ef , σ̂)

When a conditional is reached, both branches may be taken.

6.2.2 Naïvely Computing the Analysis

We first define an injection function Î which, given a program e, determines an initial

state ς̂0 = Î(e).

Î : E → �Σ

Î(e) = (e, ⊥)

To compute our analysis, we can simply visit all states reachable from ς̂0. We define a

transfer function for the system-space of our program f̂ : P(�Σ) → P(�Σ):

f̂(Ŝ) = {ς̂ � : ς̂ ∈ Ŝ and ς̂ ≈> ς̂ �} ∪ {ς̂0}

Unfortunately, this approach is impracticable as the total number of stores is exponential in

the size of the program, even for this context-insensitive analysis.
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6.2.3 Efficiently Computing the Analysis

A more efficient method uses a single store to replace the multitude of individual stores.

This global store is maintained as the least-upper-bound of all stores seen so far. Global-

store-widening is a sound, and in practice quite reasonable, approximation of the naïve

calculation (Might, 2007; Shivers, 1991). With this form of widening applied, 0-CFA is in

O( n3

log(n)). We factor the store out of our state-space while retaining a set of reachable

expressions denoted r̂ as an explicit model of control-flow. EigenCFA compromises on

precision by modeling only the store.

r̂ ∈ �Reach = P(E)

ξ̂ ∈ Ξ̂ = �Reach× �Store

Over factored system-spaces Ξ̂, the transfer function becomes:

f̂ : Ξ̂ → Ξ̂

f̂(r̂, σ̂) = (r̂ ∪ r̂�, σ̂�)

where Ŝ = {ς̂ � : e ∈ r̂ and (e, σ̂) ≈> ς̂ �}

r̂� = {e : (e, _) ∈ Ŝ}

σ̂� =
�

{σ̂�� : (_, σ̂��) ∈ Ŝ}

The notation _ matches any value without binding it to a variable.

The store grows monotonically across transition, i.e., (_, σ̂) ≈> (_, σ̂�) implies σ̂ � σ̂�,

so f̂ grows monotonically over Ξ̂. Because Ξ̂ is finite and f̂ is continuous, we know that the

least-fix-point of f̂ is f̂n(⊥,⊥) for some finite n.

6.3 Partitioning the Transfer Function
The central insight of our improvement to EigenCFA is that we can partition a transfer

function by reachable state under evaluation. By grouping these individual transfer functions

into GPU kernels according to like control-flow, we can minimize thread-divergence in a

SIMD implementation. An individual transfer function f̂e handles only the propagation of

flows caused directly by e:
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f̂e : Ξ̂ → Ξ̂

f̂e(r̂, σ̂) = (r̂ ∪ r̂�e, σ̂�
e)

where Ŝe = {ς̂ � : e ∈ r̂ and (e, σ̂) ≈> ς̂ �}

r̂�e = {e�� : (e��, _) ∈ Ŝe}

σ̂�
e =

�
{σ̂�� : (_, σ̂��) ∈ Ŝe}

To determine the correctness and precision of this technique, we show its equivalence to an

unpartitioned transfer function so we may exploit the corollary that a solution ξ̂ which is

simultaneously a fix-point for all f̂e is guaranteed to be a fix-point for f̂ .

Theorem 19 (Transfer Partitioning).

f̂(r̂, σ̂) =
�

e∈r̂
f̂e(r̂, σ̂)

Proof. (Sketch) Follows from the observation that Ŝe for all e ∈ r̂ is a collection of covering

subsets for Ŝ.

Ŝ =
�

e∈r̂
Ŝe

Therefore, r̂� is also the least-join of all r̂�e as is σ̂� of all σ̂�
e.

6.4 A Linear Encoding of 0-CFA
Now that we may arbitrarily partition a transfer function to minimize thread-divergence,

a linear encoding for handling a call site can be defined separately from a linear encoding

that handles a conditional, a primitive operation, or another form. The goal now is to

produce an implementation for each fe defined exclusively in terms of matrix multiplication

(×), outer product (⊗), element-wise boolean-or (+), and dot product (·).
For any finite domain, we can assign a canonical order to its contents and represent

elements of its set or power-set as boolean vectors. Where vectors contain a single entry,

they represent a single element in the set they encode, and where they contain more than

one entry, the representation naturally extends to encoding more than one element at once.

For example, as defined below, a value �v ∈ �V is a vector representing a flow-set of abstract

values. In the case of �S, we use �r in all cases to denote a set of states and �s to denote a

particular state (i.e., a vector with a single entry).

�r,�s ∈ �S = {0, 1}|E|

�a ∈ �A = {0, 1}|�V ar|+| �V alue|

�v ∈ �V = {0, 1}| �V alue|
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Vectors �a represent atomic-expressions, either variables or values. This is a design choice

taken directly from EigenCFA which allows the various cases required for Â to be imple-

mented as a single multiplication.

A function g over these vectors can be encoded as multiplication with a matrix, and may

handle inputs which encode a set so long as the property g(x ∪ y) = g(x) ∪ g(y) holds for

all x and y. The store is such a function, one which maps variables to a flow-set of values,

and values to themselves:

σ : �A → �V

If values are ordered after variables in �A, the bottom of the store will always be an

identity matrix. Below is an example of a lookup showing how the store is used to map

a variable to its flow-set via matrix multiplication. We use a CPS version of our original

snippet of Scheme code for clarity.

((lambda (add5x0)

(add5x0 10d̂3 (lambda (resultx3) (halt)l3)d̂2)l1)d̂0

(lambda (ax1 add5kx2)

(prim + ax1 5d̂3 add5kx2)l2)d̂1)l0

Annotations show an assignment of labels to expressions, variables to vectors in �A, and

abstract values to vectors in �V . The abstract value d̂3 represents INT.

Example 20. ��a��× σ = ��{INT}��

� x0 x1 x2 x3 d̂0 d̂1 d̂2 d̂3

0 1 0 0 0 0 0 0
�
×




d̂0 d̂1 d̂2 d̂3

x0 0 1 0 0
x1 0 0 0 1
x2 0 0 1 0
x3 0 0 0 1

d̂0 1 0 0 0
d̂1 0 1 0 0
d̂2 0 0 1 0
d̂3 0 0 0 1




=
� d̂0 d̂1 d̂2 d̂3

0 0 0 1
�

The notation ��·�� is used informally to denote the matrix representation of a given entity.

Including an identity matrix in the store composes two mappings as one matrix so that all

cases in Â may be handled together as a single multiplication.
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A program’s syntax tree can also be encoded as a series of matrices. For example, a

matrix Body maps lambdas in �V to their body expression in �S. The same can be done for

the true and false branches of a conditional form.

Body : �V → �S

CondTrue : �S → �S

CondFalse : �S → �S

Fun : �S → �A

Argi : �S → �A

Vari : �V → �A

Fun maps call sites to the atomic-expression in call-position. If this is a variable, a value

in the top portion of �A will result; if it’s a lambda or constant value, an entry in the lower

portion of �A results. Argi represents a similar encoding for argument i of a call site. Vari

encodes formal parameter i of a lambda. For example, we can expect ��(λ (a add5k) . . . )��×
Var2 to yield a value ��add5k��.

For a call site �s, the value of its second argument can be computed as �v2 = �s×Arg2×σ

and the value of the applied lambda as �vf = �s × Fun × σ. The second formal parameter

for �vf may then be computed as �a2 = �vf ×Var2 and with these two values, the store can

be updated with a binding to �v2 for �a2. This is accomplished by using the outer product

�a2⊗�v2 as this will give a store-update matrix with an entry at index (m,n) whenever �a2 has

an entry at position m and �v2 has one at n. An update is applied to the current store using

element-wise boolean-or. The example below shows the store update produced for add5k.

Example 21. ��add5k�� ⊗ ��(lambda (result) (halt))��
0000000000000000000000000 = ��[add5k �→ (lambda (result) (halt))]��

� x0 x1 x2 x3 d̂0 d̂1 d̂2 d̂3

0 0 1 0 0 0 0 0
�
⊗

� d̂0 d̂1 d̂2 d̂3

0 0 1 0
�
=




d̂0 d̂1 d̂2 d̂3

x0 0 0 0 0
x1 0 0 0 0
x2 0 0 1 0
x3 0 0 0 0

d̂0 0 0 0 0
d̂1 0 0 0 0
d̂2 0 0 0 0
d̂3 0 0 0 0




An operation �vf × Body finds the body for �vf , and boolean-or is used to extend the

vector of reachable expressions �r. A full encoding for fe where e is a call site of length j can

now be defined in full using these operations:
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f�scallj (�r, σ) = (�r �, σ�)

where �vf = �scallj × Fun× σ

�vi = �scallj ×Argi × σ

�ai = �vf ×Vari

σ� = σ + (�a1 ⊗ �v1) + . . .+ (�aj ⊗ �vj)

�r � = �r + (�vf ×Body)

To handle set! forms, we may reuse the matrix Fun for encoding the continuation,

Arg1 for encoding the variable being set, and Arg2 for encoding the atomic-expression it’s

being assigned to. The continuation receives a value ��VOID�� we will denote as
−−→
void:

f�sset!(�r, σ) = (�r �, σ�)

where �vf = �sset! × Fun× σ

�avar = �vf ×Var1

�aset = �sset! ×Arg1

�vset = �sset! ×Arg2 × σ

σ� = σ + (�avar ⊗
−−→
void) + (�aset ⊗ �vset)

�r � = �r + (�vf ×Body)

Conditionals make no changes to the store, but extend reachability to the subexpression

for the true or false branches as appropriate.
−−−→
false is used to denote ��FALSE�� and

−−−−−−→
notfalse

to denote its inverse – which is notably not the same as ��TRUE��. A dot product is used to

obtain a boolean value which is false exactly when the intersection of two sets is empty:

f�sif (�r, σ) = (�r �, σ)

where �vcond = �sif ×Arg1 × σ

tb = �vcond ·
−−−−−−→
notfalse

fb = �vcond ·
−−−→
false

�r � = �r + tb(�sif ×CondTrue) + fb(�sif ×CondFalse)

6.4.1 A Fixed-Point Algorithm

To find a solution, we can iterate to a fix-point (�r, σ) over all f�s where �s is drawn from the

entries of �r. In practice, we may exploit both the fine-grain parallelism of matrix operations

and the coarse-grain parallelism of running each f�s concurrently. As each individual f�s is
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monotonic and continuous, our reasoning on termination and precision from Section 6.2.3

remains applicable.

while σ or �r changes do

foreach �s in �r do

(�r,σ) = f�s(�r,σ)

end

end

6.5 Efficient Dynamic Matrix Updates
Sparse matrix-vector multiply (SpMV), the workhorse operation of many numerical simu-

lations, has seen use in a wide variety of areas such as data mining (Im et al., 2000) and graph

analytics (Gilbert et al., 2007). In scientific computing and numerical algorithms, a majority

of the total processing is frequently spent on SpMV operations. Iterative computations such

as the power method and conjugate gradient are commonly used in numerical simulations

and require successive SpMV operations (Saad, 2003). GPUs are increasingly used for

computing these operations as they are, in principle, highly parallelizable. GPUs have both

a high computational throughput and a high memory bandwidth. Operations on sparse

matrices are generally memory bound, which makes the GPU a good target platform due to

its higher memory bandwidth compared to that of the CPU. However, it is still difficult to

attain high performance with sparse matrices because of thread divergence and noncoalesced

memory accesses.

Some applications require dynamic updates to the matrix; broadly construed, updates

may include inserting or deleting entries. Fully compressed formats such as compressed

sparse row (CSR) cannot handle these operations without rebuilding the entire matrix.

Rebuilding the matrix is orders of magnitude more costly than performing an SpMV opera-

tion. The ellpack (ELL) format allocates a fixed amount of space for each row, allowing fast

insertion of new entries and fast SpMV but limits each row to a predetermined number

of entries and can be highly memory inefficient. The coordinate (COO) format stores

a list of entries and permits both efficient memory use and fast dynamic updates but is

unordered and slow to perform SpMV and SpMM operations. The hybrid-ellpack (HYB)

format attempts a compromise between these by combining an ELL matrix with a COO

matrix for overflow. Operations over rows may require examination of this overflow matrix,
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however, and efficiency suffers.

Matrix representations of sparse graphs sometimes exhibit a power-law distribution

(when the number of nodes with a given number of edges scales as a power of the number

of edges). This distribution results in a long tail in which a few rows have a relatively high

number of entries, but the rest have a relatively low number. Real-world phenomena often

exhibit the power-law distribution—their corresponding matrices can represent adjacency

graphs, web communication, and, in the case of our static analysis application, finite-state

simulations. Such a matrix is also the pathological case for memory efficiency in the ELL

format and requires significant use of the COO portion of a HYB matrix, making neither

particularly well suited for dynamic sparse-graph applications.

Outside static analysis, sparse-matrix factorization is the essential step in direct methods

for solving linear systems. This process is highly time and memory consuming, and could

benefit from efficient dynamic updates to the factors being built or reduced. Existing

methods for LU -decomposition (Gupta et al., 2009) and Cholesky decomposition (Avron

and Gupta, 2012) make frequent use of sparse-matrix addition to union components of

the overall workload during a recursive merging step. This union of matrices is done by

allocating a fresh matrix all at once or by proprietary ad-hoc methods, which have gone

undisclosed in the literature. Our work provides a general matrix format that allows such

merging steps to incrementally extend an existing matrix.

Sparse matrix-matrix multiplication (SpMM) is another application for efficient dynamic

updates. Existing approaches use an intermediate COO format matrix to compile a list of

partial results before building the final product. A more efficient approach is to dynamically

extend the final product with these intermediate results as they are asynchronously accu-

mulated. Algebraic multigrid can be formulated in terms of SpMV, SpMM, and primitive

vector operations, and this is often the preferred method on the GPU (Bell et al., 2012).

In this section, we review existing matrix formats and present our alternative approach

to dynamic matrix allocation which allows an existing matrix to be modified arbitrarily

in-place for certain operations. We also demonstrate that operations such as SpMM, which

cannot be done in-place, still benefit greatly from our dynamic format due to improved

memory efficiency. Our format, dynamic compressed sparse row (DCSR), has been designed

for easy conversion with standard CSR, fast dynamic updates, and fast SpMV (King et al.,

2016).
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6.5.1 Sparse Matrices

Sparse matrices are those using one of a variety of formats which optimizes for values

with only a small percentage of non-zero entries. As SpMV is arguably the most important

sparse-matrix operation, we want to maintain efficient times for the problem Ax = y. A

major design principle for sparse-matrix formats is to reduce irregularity in memory accesses.

To begin, we review the most commonly used sparse-matrix formats.

The coordinate (COO) format is the simplest sparse-matrix format. It represents a

matrix with three vectors holding the row indices, column indices, and values for all non-zero

entries in the matrix. The entries within a COO format must be sorted by row in order to

efficiently perform an SpMV operation. SpMV operations are conducted in parallel through

segmented reductions over the length of the arrays. Tracking which thread has processed

the final entry in a row requires explicit interthread communication.

The compressed sparse row/column (CSR/CSC) formats have arrays that fully store two

of the three sets, either the column indices or the row indices in addition to the values.

Either the rows or columns (in CSR or CSC, respectively) are compressed to store only the

offsets into the other two arrays. For CSR, entry i and i+1 in the row offsets array will store

the starting and ending offsets for row i. CSR has been shown to be one of the best formats

in terms of memory usage and SpMV efficiency due to its fully compressed nature and has

become widely used (Greathouse and Daga, 2014). CSR has a greater memory efficiency

than COO, which is a significant factor in speeding up SpMV operations due to decreased

memory bandwidth usage.

The ellpack (ELL) format uses two arrays, each of size m × k (where m is the number

of rows and k is a fixed width), to store the column indices and the values of the matrix

(Garland, 2008; Garland and Kirk, 2010). These arrays are stored in column-major order

to allow for efficient parallel access across rows. This format is best suited for matrices that

have a fixed number of entries per row. Allocating enough memory in each row to store the

entire matrix is prohibitively expensive for ELL when a matrix contains even one long row.

The hybrid-ellpack (HYB) format offers a compromise by using a combination of ELL

and COO. It stores as many entries as possible in an ELL portion, and the overflow from

rows with a number of entries greater than the fixed ELL width is stored in a COO portion.

ELL and HYB have become popular on SIMD architectures due to the ability of thread

warps to look through consecutive rows in an efficient parallel manner (Bell and Garland,

2008).

A number of other specialized sparse-matrix formats have been developed, including
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jagged diagonal storage (JDS), block diagonal (BDIA), skyline storage (SKS), tiled COO

(TCOO), block ELL (BELL), and sliced-ELL (SELL) (Monakov et al., 2010), all of which

offer improved performance for specific matrix types. Blocked variants of these and other

formats work by storing localized entries in blocks for better data locality and a reduction

in index storage. “Cocktail” frameworks that mix and match matrix formats to fit specific

subsets of the matrix have been developed, but they require significant preprocessing and

are not easily modified dynamically (Su and Keutzer, 2012). Garland et al. have provided

detailed reviews of the most common sparse matrix formats (Garland, 2008; Garland and

Kirk, 2010; Vuduc, 2003), as well as an analysis of their performance on throughput-oriented

many-core processors (Bell and Garland, 2009).

Block formats such as BRC (Ashari et al., 2014b) and BCCOO (Yan et al., 2014) have

limited ability to add in additional entries. BRC can add new entries only if those entries

correspond to zeros within blocks that have been stored. BCCOO can handle the addition

of new entries, but it suffers from many of the same problems as COO. Also, new insertions

will not always follow a blocked structure, so additional blocks may be especially sparse,

which lowers memory efficiency.

Many sparse matrix formats are fully compressed and do not allow additional entries to

be added to the matrix dynamically. Adding additional entries to a CSR matrix requires

rebuilding the entire matrix, since there is no free space between entries. Of existing formats,

COO is the most amenable to dynamic updates because new entries can be placed at the

end of the data structure. However, updating a COO matrix in parallel requires atomic

operations to keep track of currently available memory locations. The ELL/HYB formats

allow for some additional entries to be added in a limited fashion. ELL cannot add in

more entries per row than the given width of the matrix, and while the HYB format has a

COO matrix to handle overflow from the ELL portion, it cannot be efficiently updated in

parallel since atomic operations are required and the COO portion must maintain the sorted

property.

6.5.2 Sparse Matrix Algorithms on the GPU

A great deal of research has been devoted to improving the efficiency of SpMV on both

multicore and many-core architectures. Williams et al. demonstrated the efficacy of using

architecture-specific data structures to optimize performance (Liu et al., 2013; Williams

et al., 2007). Since SpMV is a bandwidth-limited operation, research has also produced

other methods, such as automatic tuning, blocking, and tiling, to increase cache hit rates
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and decrease bandwidth usage (Choi et al., 2010; Reguly and Giles, 2012; Yang et al., 2011).

The two most common CSR SpMV algorithms are CSR-scalar and CSR-vector. CSR-

scalar assigns one thread per row and CSR-vector assigns a vector of threads to each row.

On SIMD architectures, the vector size generally never exceeds a full warp (to avoid explicit

synchronization between threads). A vectorized approach allows for more efficient coalesced

memory accesses. A hybrid approach has been shown to be effective. This method selectively

picks between CSR-scalar and CSR-vector based on the row length (Greathouse and Daga,

2014). Adaptive algorithms that group rows together by length and assign separate kernels

to each group have also been explored (Ashari et al., 2014a).

Graph applications often use sparse binary adjacency matrices to represent graphs and

translate graph operations to linear algebraic operations (Kepner and Gilbert, 2011). Find-

ing the transitive closure of a graph can be done through repeated multiplication of its

adjacency matrix. The transitive closure of an adjacency matrix R calculates R+ = ∪
i∈{1,2,...}

Ri,

where Ri is the ith power of the matrix. The result is Ri having a non-zero between any

pair of nodes connected by a path of length i. Thus, the union (addition/binary-or) of all

R, . . . Rn will have a non-zero entry for every pair of nodes that are connected by a path of

length ≤ n. This process of unioning successive powers of R can be continued until a fixed

point is reached. All nodes that are connected by a path of any length will be marked in

the matrix.

Bandwidth limited sparse matrix-matrix operations such as sparse matrix-matrix ad-

dition A + B = C and sparse matrix-matrix multiplication AB = C remain difficult to

compute efficiently. These operations require creating a new sparse matrix C whose entries

and sparsity will depend on the sparsity patterns of A and B, and will often have a differing

number of elements than either. Current implementations generally look globally at both

matrices and find the intersection patterns using temporary workspace memory, after which

the new matrix C can be generated (Bell and Garland, 2012; Khronos Group, 2011). This

often involves format conversions that consume additional time and memory.

6.5.3 Dynamic Allocation and SpMV

We now present our dynamic sparse-matrix allocation method that allows for efficient

dynamic updates while still maintaining fast SpMV times (King et al., 2016). Our dynamic

allocation uses a row offset array, representing a dense array of ordered rows, and for each

a fixed number of segment offsets. The column indices and values are stored in arrays

that are logically divided into these data segments in the same way that CSR row offsets
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partition the column indices and values. Each such segment is a contiguous portion of

memory that stores entries within a row. Segments may contain more space than entries to

allow for future insertions. The contiguous layout of entries within the set of segments for

a given row is equivalent to the corresponding row in CSR format. We next illustrate how

dynamic allocation is performed, after which we provide details of how DCSR operations

are implemented. We then present our implementation of an improved SpMM algorithm

that utilizes DCSR for asynchronous dynamic writes to the resulting C matrix.

Initializing the matrix can be done in one of two ways. Either a matrix can be loaded

from another format (e.g., COO or CSR) or the matrix can be initialized as blank. In the

latter case, each row is assigned an initial number of entries (an initial segment size) in the

column indices and values arrays. The row offset array is initialized with space for k segment

offset pairs, with either no allocated segments or a single allocated segment of size µ per

row. The latter case will consume the same amount of memory as an ELL matrix with a row

width of µ, except in row-major order instead of column-major order. To allow for dynamic

allocation, we maintain a larger memory buffer than needed and use simple bump-pointer

allocation to add new segments. This allocation pointer is set to the end of the currently

used space (rows × µ in the case of a new matrix). A maximum size of memory buffer for

the columns and values arrays is specified by the user. Figure 6.1 provides an illustrative

comparison of CSR, HYB, and DCSR formats.

The format consists of four arrays for column indices, values, row offsets, and row sizes, in

addition to a memory allocation pointer. The row offsets array functions in a similar manner

to that of its CSR counterpart, except that both a beginning and ending offset are stored

and space exists for up to k such pairs per row. This table is encoded as a strided array

where the starting and ending offsets of segment k in row i are indexed by (i ∗ 2+ k ∗ pitch)
and (i ∗ 2 + k ∗ pitch+ 1), respectively. The pitch may be defined as a value convenient for

cache performance such that pitch ≥ 2 ∗ rows. Each set of offsets for a given segment lies

within a different cache line, which serves to increase memory aligned accesses. The number

of memory segment offset pairs (the max k) is an adjustable parameter specified at matrix

construction. The column indices and values correspond 1:1, just as in CSR. Unlike CSR,

however, there may be more than one memory segment assigned to a given row, and the

segments need not be contiguous. As the last segment for a row may not be full, the actual

row sizes are maintained so the used portion of each segment is known.

Explicitly storing row sizes allows for optimization techniques such as the adaptive

binning strategy used in adaptive CSR (ACSR) (Ashari et al., 2014a). This optimization
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Figure 6.1. Comparison of CSR, DCSR, and HYB formats.

implements customized kernels to process bins of specified row-lengths. We make use of this

optimization by binning rows together based on row size before SpMV or SpMM operations.

Each row is given a bin label based on its size (1, 2-3, 4-8, 9-16, 17-32, . . . ). A permuted

set of row indices is created by sorting according to these bin labels. Bin-specific kernels

are launched with these permuted indices on separate streams which allows each kernel to

easily access the rows that it needs to process without scanning over the matrix.

When inserting new elements within a row, the last allocated segment for that row is

located and if space is available, the new elements are inserted in a contiguous fashion just

after current entries. If that segment does not have enough room, a new segment will be

allocated with the appropriate size plus an additional amount α. The α value represents

additional “slack space” and allows for a greater number of entries to be inserted without

the creation of a new segment. If dynamic updates follow a power-law distribution, there

will be a higher probability of additional entries being inserted into longer rows. Although

we experimented with setting α to be a factor of the previous segment size, for our tests,

we settled on a value of µ (average row size of matrix). When a new segment is allocated,

the memory allocation pointer is atomically increased by the size of the new segment. A

hard limit on these additions, before defragmentation is required, is fixed by the number of
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segments k. The defragmentation operation always reduces the number of segments in each

row to one, which allows the format to scale to an arbitrary number of allocations.

Algorithm 1 provides pseudo-code illustrating new segment allocation. This allocation

function can be parallelized across rows, as each vector of threads will execute this function

on a different row. Within a row, a vector of threads operate together to add new elements

into matrix A from an array of values B (B_offsets, B_cols, B_vals). The segments could be

of variable length, so the total size is computed by looping over the segments and summing

the differences of the starting and ending offsets (A_start, A_end). The current available

memory is calculated by computing the difference of the final segment ending offset and

index of the last element (A_end − A_start). If there is enough room, the elements are

inserted into the remaining space, otherwise a new segment must be allocated. This is

performed by atomically incrementing the memory offset pointer to allocate a new segment

of memory of size equal to new elements minus the remaining free space plus an α value.

The returned address addr is the beginning offset of the new segment of size size. Afterward,

the new elements are inserted via Algorithm 2.

When inserting new elements into the matrix, it is possible that duplicate non-zero

entries (i.e., two or more entries with the same row and column index) will be added.

Duplicate entries are handled in one of two ways. The first method is to simply let them

accumulate, which does not pose a problem for many operations. SpMV operations are

tolerant of duplicate entries due to the distributive property of the inner product and will

yield the same result to within floating point tolerance. For binary matrices, the row-vector

inner products will produce the same result irrespective of duplicate non-zeros. A second

solution is to perform a segmented reduction on the entries after sorting by row and column,

which combines all entries with matching row and column indices into a single entry. This

full reduction is generally not needed when performing only SpMV and addition operations.

Sparse matrix-matrix multiplication (SpMM) operations may cause significant fill-in which

would require such a reduction to be performed. In our SpMV tests, we let the values

accumulate for all formats as they do not hinder the SpMV operations that are performed.

Algorithm 2 provides pseudo-code for the insertion operation. A vector of threads will

operate together to add the elements into the segments. After a segment is full, the next

segment indices are retrieved from the offsets table whose starting and ending offsets are

A_start and A_end, respectively. Column indices and values are copied from B_cols and

B_vals to their respective locations in the A matrix. After this is complete, a single thread

will update the row sizes array to reflect the new size.
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Algorithm 1: Allocate Segments
Input: sizes, offsets, Aj, Ax, B_offsets, B_cols, B_vals
Output: sizes, offsets, Aj, Ax

1 row ← vid ; // vector ID
2 while row < n_rows do
3 sid ← 0 ; // segment index
4 rl ← sizes[row] ; // row length
5 idx ← 0 ; // thread row index
6 start ← offsets[row ∗ 2] ; // starting segment offset
7 end ← offsets[row ∗ 2 + 1] ; // ending segment offset
8 free_mem ← 0;
9 B_start ←B_offsets[row ∗ 2];

10 B_end ←B_offsets[row ∗ 2 + 1];
11 rlB ← B_row_end−B_row_start;
12 if rlA ≥ 0 then
13 while A_idx < rlA do
14 idx ← idx+ (A_end−A_start);
15 if idx < rlA then
16 sid ← sid+ 1;
17 A_start ← offsets[sid∗pitch+row ∗ 2];
18 A_end ← offsets[sid∗pitch+row ∗ 2 + 1];

19 idx ← A_end+ rlA− idx;

20 else
21 idx ← A_start;

22 free_mem ← A_end−A_start;
23 if lane = 0 AND free_mem < rlB AND rlB > 0 then

// allocate new space
24 size ← rlB − free_mem+ α;
25 addr ← atomicAdd(sizes[n_rows], size);

// allocate new row segment
26 offsets[(sid+ 1)*pitch + row ∗ 2] ← addr;
27 offsets[(sid+ 1)*pitch + row ∗ 2 + 1] ← addr + size;

// Allocate new entries (Algorithm 2)
28 Insert_Elements();
29 row ← row + num_vectors;

An SpMV operation works as follows. The first pair of segment offsets is fetched. The

entries within the corresponding segment are multiplied by the appropriate values in x

according to the algorithm being used (CSR-scalar, CSR-vector, etc.). If the row size is

greater than the capacity of the current memory segment, the next pair of offsets is fetched.

If the size of the current segment plus the running sum of the previous segment sizes is

greater than or equal to the row size, this is the final segment of the row. In case the final
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Algorithm 2: Insert Elements
Input: sizes, offsets, Aj, Ax, B_cols, B_vals
Output: sizes, Aj, Ax

1 B_idx ← B_start+lane ; // add thread lane
2 while B_idx < B_end do
3 if idx ≥ A_end then
4 pos ← idx−A_end;
5 sid ← sid+ 1;
6 A_start ← offsets[sid∗pitch+row ∗ 2];
7 A_end ← offsets[sid∗pitch+row ∗ 2 + 1];
8 idx ← A_start+ pos;

9 Aj[idx] ← B_cols[B_idx];
10 Ax[idx] ← B_vals[B_idx];
11 B_idx ← B_idx+ VECTOR_SIZE;
12 idx ← idx+ VECTOR_SIZE;

13 if lane = 0 then
14 sizes[row] ← sizes[row] + rlB;

segment is not full, the location of the last entry can be determined by the difference of the

row size and the running sum. This process continues until the entire row has been read.

As the matrix accumulates more segments, SpMV performance decreases slightly. A fixed

number of segments also means this process cannot continue forever. Our solution to both

problems is to implement a defragmentation operation that compacts all the entries within

the column indices and values arrays, eliminating empty space. This defragmentation step

combines all the segments in a row into a single segment that compactly stores the entire

row. This operation may be invoked periodically, or more conservatively when a row has

reached its maximum capacity of segments. In practice, we do the latter and set a flag when

any row reaches its maximum segment count. At this point, we consider defragmentation

to be required. Algorithm 3 illustrates the SpMV operation. This is performed in a similar

fashion to CSR-vector, except that there is an outer loop over the segments.

Defragmentation performs the equivalent to a sort by row operation on the entries of

the matrix; we formulated a method that does not require an actual sort and is significantly

faster than doing so. Since we explicitly store row sizes, we perform a prefix-sum operation

on them to calculate the new row offsets in a compacted CSR form. The entries are then

shuffled from their current indices to their new indices in newly allocated column indices and

values buffers, after which we set a pointer in our data structure to these new arrays and free

the old buffers (shallow copy). By using the knowledge of the row sizes to compute resulting

offsets and indices, we eliminate the need to do any comparisons in this operation, which
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Algorithm 3: DCSR SpMV
Input: sizes, offsets, Aj, Ax, x, y
Output: y

1 tid ← thread index ; // thread ID
2 lane ← tid % V ec_Size ; // lane ID
3 vid ← tid / V ec_Size ; // vector ID
4 for row ← vid to num_rows, row += num_vecs do
5 idx ← 0 ; // thread row index
6 rl ← sizes[row] ; // row length
7 sid ← 0 ; // segment index
8 while idx < rl do
9 start ← offsets[sid∗pitch + row ∗ 2];

10 end ← offsets[sid∗pitch + row ∗ 2 + 1];
/* accumulate local sums */

11 for j ← start to end, j += V ec_Size do
12 sum += Ax[j] * x[Aj[j]];

13 idx += (end - start);

14 y[row] = sum;

greatly improves performance. The defragmentation process is described by Algorithm 4.

Figure 6.2 illustrates an example of inserting new elements into a DCSR matrix. Initially,

the matrix has four populated rows with the memory allocation pointer being 16. Row 0

can insert 1 additional entry in its current segment before a new segment would need to

be allocated. Rows 1 and 2 have enough room for two additional entries, but row 3 is full.

Figure 6.2 shows a set of new entries that are inserted into rows 0, 2, and 3. In this case,

a new segment of size 4 is allocated for row 0 and row 3. The additional segments need

not be consecutive nor in order of row since the exact offsets are stored for each segment.

Finally, the defragmentation operation computes new segment offsets from the row sizes.

The entries are shuffled to their new indices which results in a single compacted segment for

Algorithm 4: Defragment DCSR
Input: sizes, offsets, Aj, Ax
Output: offsets, Aj, Ax
/* prefix sum on row sizes */

1 exclusive_scan(sizes, temp_offsets);
2 new T_cols(size(Aj)), new T_vals(size(Ax));
3 CompactIndices(T_cols, T_vals, temp_offsets, Aj, Ax, offsets, sizes);
/* shallow copy, old arrays deleted */

4 Aj = &T_cols, Ax = &T_vals;
5 SetRowOffsets(offsets, sizes, temp_offsets);
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Figure 6.2. Illustration of insertion and defragmentation operations with DCSR.

each row.

As CSR is the most commonly used sparse matrix format, we designed DCSR to be

compatible with CSR algorithms and to allow for easy conversion between the formats.

Minimal overhead is required to convert from CSR to DCSR and vice versa. When converting

from CSR to DCSR, the column indices and values arrays are copied directly. For the row

offsets array, the ith element is copied to indices i ∗ 2− 1 and i ∗ 2 for all elements except the

first and last one. A simple subtraction must be performed to calculate the row sizes from

the row offsets. Converting back is equally simple, assuming the matrix is first defragmented;

the column indices and values arrays are copied back, and the starting segment offset from
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each row is copied into the row offsets array.

6.5.4 Sparse Matrix-Matrix Multiplication (SpMM)

It is a difficult task to efficiently compute C = AB for sparse matrices in parallel.

The sequential sparse matrix-matrix multiplication algorithm is not suitable for fine-grained

parallelization. Sequential algorithms are efficient, but they rely on a large amount of

(per thread) temporary storage. Specifically, to compute the sparse product C = AB,

the sequential methods use O(N) additional storage, where N is the number of columns in

C. The parallel approach to sparse matrix-matrix multiplication is formulated in terms of

highly scalable parallel primitives with no such limitations. As a result, a straightforward

parallelization of the sequential scheme requires O(n) storage per thread, which is not

possible when using tens of thousands of independent threads of execution. Although it

is possible to construct variations of the sequential method with lower per-thread storage

requirements, any method that operates on the granularity of matrix rows (i.e., distributing

matrix rows over threads), requires a nontrivial amount of per-thread state and suffers load

imbalances for certain input (Bell et al., 2012).

The standard algorithm for parallel SpMM that exposes fine-grained parallelism is:

1. Expansion of A ∗B into an intermediate coordinate format T .

2. Sorting of T by row and column indices to form T̂ .

3. Compression of T̂ by summing duplicate values for each matrix entry.
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Example 22. T and T̂ are given for C = AB, where

A =



1 0 3
2 2 0
0 7 9


, B =



4 3 7
0 5 0
2 0 8


,

C =



10 3 31
8 16 14
18 35 72




T =




0, 0, 4.0
0, 1, 3.0
0, 2, 7.0
0, 0, 6.0
0, 2, 24.0
1, 0, 8.0
1, 1, 6.0
1, 2, 14.0
1, 1, 10.0
2, 1, 35.0
2, 0, 18.0
2, 2, 72.0




T̂ =




0, 0, 4.0
0, 0, 6.0
0, 1, 3.0
0, 2, 7.0
0, 2, 24.0
1, 0, 8.0
1, 1, 6.0
1, 1, 10.0
1, 2, 14.0
2, 0, 18.0
2, 1, 35.0
2, 2, 72.0




All three stages of the algorithm expose fine-grained parallelism that the GPU can

take advantage of. The algorithm can be formulated in terms of efficient data-parallel

computations — gather, scatter, scan, sort, etc. Like the sequential algorithm, this for-

mulation is work efficient. It computes the exact number of partial products required for

each non-zero without performing any additional operations with zero entries. It has the

same computational complexity as the sequential method O(nnz(T )). The complexity is

proportional to the size of the intermediate format T , and the work required at each stage

is linear with respect to T . This process results in a relatively even load balancing across

the GPU regardless of the sparsity patterns of the input matrices.

A limitation of this method is that the memory required to store the intermediate format

is potentially large. If A and B are both square, n× n matrices with exactly K entries per

row, then O(nK2) bytes of memory are needed to store T. Since the input matrices are

generally large themselves (O(nK) bytes), it is not always possible to store a K-times larger

intermediate result in memory. In the limit, if A and B are dense matrices (stored in sparse

format), then O(n3) storage is required. In such a case, the matrix-matrix multiplication C =

AB can be decomposed into several smaller operations that are computed in a workspace
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of bounded size. The resulting slices are then concatenated together to produce the final

result. This technique introduces some overhead, but in practice, it is relatively small as the

workspace can be sized appropriately to saturate the device.

Our implementation of SpMM follows the same principles as the general algorithm,

but we assign specialized kernels to process rows grouped by size. This algorithm allows

for a more efficient use of shared memory when performing the sort and reduction opera-

tions. DCSR allows for asynchronous dynamic memory allocations when storing the rows

products into C. This property of DCSR allows computation of the rows to be handled

asynchronously. In the standard algorithm, the result of each previous row is required to

know the offset when writing the final result into C. We precompute the number of partial

products per row i following:
ARSi�

k=1

BRSj

where ARSi is the number of entries in row i of matrix A, and j is the column index of

element ai,j . We then assign specific kernels, based on this row size, to process rows of

length 1-32, 33-64, 65-128, 129-256, 257-512, 513-1024, 1025-2048, and 2049+.

The kernels process a row by computing the partial products, sorting them by column

index, and reducing them before storing them in the resulting C matrix. Since this is done

on a per row basis, the row is implicit and we need only store the column indices and values

for the sorting and reduction phases. For all kernels except the 2049+ kernel, the operations

are computed within shared memory on the GPU, which provides a significant performance

improvement over global memory. For the 2049+ kernel, we use dynamic parallelism to

assign a compute kernel to each row, which performs these operations using global memory.

6.5.5 Experimental Results

To benchmark SpMV, SpMM, update, and conversion performance, we used a node with

an Intel Xeon E5-2640 processor running at 2.50GHz, 128GB of memory, and a NVIDIA

Tesla K20c GPU. We compiled using g++ 4.7.2, CUDA 7.5, CUSP 0.5.1, and Thrust 1.8.1,

comparing our method against modern implementations in CUSP (Bell and Garland, 2012)

and cuSPARSE (NVI, 2010). Table 6.1 provides a list of the matrices that we used in

our tests as well as their sizes, number of non-zeros, and row-entry distributions. All the

matrices can be found in the University of Florida sparse-matrix database (Davis and Hu,

2011).

Memory consumption is a major concern for sparse-matrix formats, as one of the primary

reasons for eliminating the storage of zeros is to reduce the memory footprint. The ELL
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Table 6.1. Matrices used in tests. NNZ: total number of non-zeros, µ: average row size, σ:
standard deviation of row sizes, Max: maximum row size

Matrix Abbr. NNZ Rows \ Cols µ \σ \ Max
amazon-2008 AMA 5M 735K 7 \ 4 \ 10

cnr-2000 CNR 3M 325K 9 \ 21 \ 2716
dblp-2010 DBL 807K 326K 2 \ 4 \ 154

enron ENR 276K 69K 3 \ 28 \ 1392
eu-2005 EU2 19M 862K 22 \ 29 \ 6985
flickr FLI 9M 820K 11 \ 87 \ 10K

hollywood-2009 HOL 57M 1139K 50 \ 160 \ 6689
in-2004 IN2 16M 1382K 12 \ 37 \ 7753

indochina-2004 IND 194M 7414K 26 \ 216 \ 6985
internet INT 207K 124K 1 \ 4 \ 138
kron-18 KRO 10M 262K 40 \ 261 \ 29K

ljournal-2008 LJO 79M 5363K 14 \ 37 \ 2469
rail4284 RAL 11M 4K \ 1M 2633 \ 4K \ 56K

soc-LiveJournal1 SOC 68M 4847K 14 \ 35 \ 20K
webbase-1M WEB 3M 1000K 3 \ 25 \ 4700

wikipedia-2005 WIK 19M 1634K 12 \ 31 \ 4970

component of HYB is best suited to store rows with an equal number of entries. If there

is a large variance in row size, much of the ELL portion may end up storing zeros, which

is inefficient. We provide a comparison of memory consumption for HYB, DCSR (using 2,

3, and 4 segments), and CSR formats in Table 6.2. We compute the storage size of the

HYB format using an ELL width equal to the average number of non-zeros per row (µ) for

the given matrix. CSR has the smallest memory footprint since its row indices have been

compressed to the number of rows in the matrix. We see that DCSR has a significantly

smaller memory footprint in almost all test cases. Test cases such as AMA and DBL have

lower memory consumption for HYB than for DCSR (with 3 and 4 segments), because these

matrices have a low row size variance. DCSR with 4 segments uses 20% less memory on

average than HYB.

Conversion times between formats are often a key factor when determining the efficacy

of a particular format. High conversion times can be a significant hindrance to efficient

performance. Architecture-specific formats may provide better performance, but unless the

rest of the code base uses that format, the conversion time must be accounted for. We

provide the overhead required to convert to and from CSR and COO matrices in Table 6.3.

The conversion times have been normalized against the time required to copy CSR → CSR.

The conversion times to DCSR are only slightly higher compared to that of CSR. HYB

requires significant overhead as the entries must first be distributed throughout the ELL
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Table 6.2. Comparison of memory consumption between HYB, CSR, and DCSR formats.
Size of HYB is listed in bytes (using ELL width of µ), and sizes for DCSR and CSR are
listed as a percent of the HYB size.

Matrix HYB size DCSR DCSR DCSR CSR
2 segs. 3 segs. 4 segs.

AMA 54M 0.924 1.026 1.128 0.77
CNR 47M 0.626 0.679 0.732 0.547
DBL 12M 0.86 1.052 1.245 0.572
ENR 4M 0.653 0.762 0.871 0.489
EU2 236M 0.675 0.703 0.731 0.633
FLI 160M 0.546 0.585 0.624 0.487
HOL 859M 0.531 0.541 0.551 0.516
IN2 229M 0.654 0.7 0.746 0.585
IND 2791M 0.571 0.591 0.612 0.541
INT 4M 0.761 0.969 1.177 0.449
KRO 171M 0.493 0.505 0.516 0.475
LJO 1152M 0.594 0.63 0.665 0.541
RAL 149M 0.577 0.577 0.577 0.576
SOC 1009M 0.595 0.631 0.668 0.54
WEB 40M 0.966 1.155 1.344 0.682
WIK 276M 0.635 0.68 0.725 0.567

portion and the remaining overflow entries distributed into the COO portion.

6.5.5.1 Matrix Updates

To measure the speed of dynamic updates, we ran two series of tests, which involved

streaming updates and iterative updates. In the streaming updates test, we incrementally

build up the matrix by continuously inserting new entries. The elements are first buffered

into three arrays, representing the rows indices, column indices, and values. We initialize the

matrix sizes according to the average number of non-zeros for the given input. The entries

are then added in a streaming parallel fashion to the matrices.

Updating a HYB matrix first requires checking the ELL portion, and if the row in

question is full, inserting the new entry into the COO portion. Any updates to the COO

portion require atomic operations to ensure synchronous writes between multiple threads.

These atomic updates are prohibitive for fast parallel updates as all threads are contending

to insert entries onto the end of the COO matrix.

Updating a DCSR matrix requires finding the last occupied (current) segment within a

row. If that segment is not full, the new entry is added into it and the row size is increased.
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Table 6.3. Comparison of relative conversion times. Conversions are normalized against
time to copy CSR→CSR.

From COO COO COO CSR CSR DCSR
To CSR DCSR HYB DCSR HYB CSR

AMA 2.93 3.03 9.22 1.06 9.25 0.9
CNR 2.24 2.62 14.84 1.04 13.62 0.87
DBL 4.34 5.74 18.07 1.17 16.83 1.1
ENR 5.56 5.95 27.15 1.29 26.95 1.14
EU2 2.1 2.29 16.08 1.06 15.67 0.99
FLI 2.13 2.5 23.29 1.06 19.74 0.96
HOL 1.82 1.9 20.37 1.01 20.3 0.99
IN2 2.15 2.42 18.12 1.06 18.15 0.98
IND 1.93 1.98 ∞ 1.03 ∞ 1.01
INT 12.07 13.74 21.38 1.3 15.12 1.0
KRO 1.78 2.09 24.01 1.0 20.14 0.91
LJO 2.09 2.19 19.96 1.02 19.97 0.98
RAL 1.73 2.03 20.67 1.0 17.97 0.91
SOC 2.22 2.35 20.47 1.06 20.41 1.01
WEB 2.89 3.19 11.45 1.16 11.56 0.86
WIK 2.18 2.42 20.13 1.07 20.11 0.98

When the current segment for a row fills up, a new segment is allocated dynamically. Since

atomic operations are required only for the allocation of new segments, and not for each

individual element, synchronization overhead is kept low. By allowing for dynamically sized

slack space within a row, we dramatically reduce the number of atomic operations that are

required to allocate new entries. In this way, DCSR was designed to be updated in an

efficient parallel manner.

The number of segments, initial row width, and α value can be tuned for the problem to

give a reasonable limit on updates. In our tests, we used four segments and an α value of µ

(average row size of the matrix). When a row nears its limit, a defragmentation is required

in order to reduce that row to a single segment.

Figure 6.3 provides the results of our iterative and streaming matrix update tests. We

do not compare to CSR in the latter case, since it is not possible to dynamically add entries

without rebuilding the matrix. This operation only loads the matrix and does not perform

any insertion checks. DCSR saw an average speedup of 4.8× over HYB with streaming

updates. In the case of IND, only DCSR was able to perform the operation within memory

capacity.

We also executed an iterative update test to compare the ability of the formats to perform
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a combination of dynamic updates and SpMV operations. This test is analogous to what

would be done in a graph application (such as CFA) where the graph is updated at periodic

intervals. In the iterative updates test, we perform a series of iterations consisting of a matrix

addition operation (A = A+ B) followed by several SpMV operations Ax = y. Part (a) of

Figure 6.3 provides the results for our iterative updates. Within each iteration, the matrix is

updated with an additional 0.2% random non-zeros followed by 5 SpMV operations, which

is repeated 50 times. This process yields a total increase of 10% to the number of non-zeros.

We compare the DCSR and HYB results to a normalized CSR baseline. In the CSR case, a

new matrix must be created to update the original matrix which causes a significant amount

of overhead (in terms of computation and memory). In the cases of LJO and SOC, CSR

was not able to complete within memory capacity, so we normalized against HYB.

DCSR shows significant improvement over HYB on streaming updates in all test cases

(in some by as much as 8×). DCSR also outperforms HYB in all test cases on iterative

updates, and in some cases by as much as 2.5×. The Amazon-2008 matrix has a low

standard deviation, and the majority of its entries fit nicely into the ELL portion, which

greatly speeds up SpMV operations. However, even in this case, DCSR slightly outperforms

HYB on iterative updates due to having lower overhead for defragmentation. In all other

cases, DCSR exhibits noticeable performance improvements over HYB and CSR.

6.5.5.2 SpMV Results

In the SpMV tests, we take the same set of matrices and perform SpMV operations with

randomly generated dense vectors. We performed each SpMV operation 100× times and

averaged the results. Figure 6.4 provides the results for these SpMV tests run using both

single- and double-precision floating-point arithmetic. We implemented the adaptive binning

optimization (ACSR) outlined in Ashari et al. (2014a), which we labeled ADCSR. This

optimization requires relatively little overhead and provides noticeable speed improvements

by using specialized kernels on bins of rows with similar row sizes. In these tests, we compare

across several variants of our format, including DCSR, defragmented DCSR, ADCSR, and

defragmented ADCSR, in addition to standard implementations of HYB and CSR.

The fragmented DCSR times are 8% slower than the defragmented DCSR times on

average. When the DCSR format is defragmented, it sees SpMV times competitive with

those of CSR (1% slower on average). With the adaptive binning optimization applied, we

see that ADCSR outperforms HYB in many cases. ADCSR performs 9% better on average

than HYB across our benchmarks.
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6.5.5.3 Postprocessing Overhead

Postprocessing overhead is a concern when dealing with dynamic matrix updates. Dy-

namic segmentation allows for DCSR to be updated with new entries without requiring

the entries to be defragmented. SpMV operations can be performed on the DCSR format

regardless of the number and order of segments, in contrast to HYB matrices where a sort

is required anytime an entry is added that overflows into the COO portion. The SpMV

operation for HYB matrices assumes the COO entries are sorted by row (without this

property, the COO SpMV would be dramatically slower). Table 6.4 provides postprocessing

times for HYB and DCSR formats relative to a single SpMV operation. In the case of IND,

HYB was unable to sort and update due to insufficient memory (represented as ∞).

The defragmentation operation gives us an opportunity to internally order rows by row-

size at no additional cost. Our defragmentation algorithm is similar to the row sorting

technique illustrated in Kreutzer et al. (2013), although we use a global sorting scope as

opposed to a localized one. Because we explicitly manage segments within the columns and

values arrays by both starting and ending index, the internal order of segments may be

Table 6.4. Overhead of DCSR defragmentation and HYB sorting is measured as the ratio
of one operation against a single CSR SpMV. Update time is measured as the ratio of 1000
updates to a single CSR SpMV.

Matrix DCSR HYB DCSR HYB
defrag sort update update

AMA 3.9 2.12 2.02 4.89
CNR 5.13 6.75 3.77 15.26
DBL 5.69 4.66 3.6 10.23
ENR 5.49 8.0 2.21 18.2
EU2 2.32 4.28 2.65 12.05
FLI 1.58 4.22 1.94 10.01
HOL 1.54 5.57 2.55 12.45
IN2 2.58 5.85 3.14 13.34
IND 2.15 ∞ 3.36 ∞
INT 6.74 6.19 1.76 8.78
KRO 1.02 3.43 1.82 11.3
LJO 1.45 3.02 1.34 6.1
RAL 0.72 2.04 1.82 13.61
SOC 1.05 3.74 1.02 5.74
WEB 2.65 1.93 2.54 7.39
WIK 1.39 2.54 1.32 5.49
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changed arbitrarily, and this permutation remains invisible from the outside. To accomplish

this optimization, we permute row sizes according to the permuted row indices (which have

already been binned and sorted by row size). The permuted row sizes can then be used to

create new offsets for the monolithic segments produced by defragmentation. The column

and value data can be internally reordered by row size at no additional cost. We observed this

internal reordering to provide a noticeable SpMV performance improvement of 12%. This

improvement is from an increased cache-hit rate via better correlation between bin-specific

kernels and the memory they access.

The DCSR defragmentation incurs a lower overhead than HYB sort because entries can

be shuffled to their new index without a sort operation. A DCSR defragmentation step is 2×
faster on average than the HYB sorting step. More importantly, this is required infrequently,

while HYB sorting must be performed at every insertion, which means that DCSR requires

significantly lower total postprocessing overhead.

6.5.5.4 Multi-GPU Implementation
DCSR can be effectively mapped to multiple GPUs. The matrix can be partitioned

across n devices by dividing rows between them (modulo n) after sorting by row size. This

provides a relatively even distribution of non-zeros between the devices. Figure 6.5 provides

scaling results for DCSR across two Tesla K20c GPUs and up to eight Tesla M2090 GPUs.

We see an average speed up of 1.93× for the single precision and 1.97× across the set of test

matrices. The RAL matrix sees a smaller performance gain due to our distribution strategy

of dividing up the rows. The added parallelism is split across rows but, in this case, the

matrix has few rows and many columns. We see nearly linear scaling for most test cases.

For the matrices INT and ENR, we see reduced scaling due to small matrix sizes. In

these cases the kernel launch times account for a significant portion of the total time due

to a relatively small workload. The total compute time can be approximately represented

as c + x
n , where c is the kernel launch overhead and the workload x is divided amongst n

devices (assuming x can be fully parallelized). As the number of devices increases, the work

per device decreases while the kernel launch time remains constant. In our tests, we perform

100× iterations of each kernel, which leads to poor scaling performance on small matrices.

We performed additional tests where we move the iterations into the kernel itself and call

the kernel once, eliminating the additional kernel launch times. We see scaling for the INT

matrix of 1.94×, 3.55×, and 6.03× and for the ENR matrix, we see scaling of 1.80×, 2.70×,

and 3.76× for 2, 4, and 8 GPUs, respectively. This suggests the poor performance of those

cases was due to having less work relative to the kernel launch overhead.
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6.5.5.5 SpMM

We test the efficiency of our SpMM method through its application to algebraic multigrid.

We compare our method to a similar version that computes SpMM using CSR and COO

matrices. AMG can be formulated in terms of SpMM, SpMV, and primitive parallel

operations. Algorithm 5 illustrates the structure of the AMG preconditioner setup phase of

AMG given a sparse matrix A and a set of vectors B. In our tests, we used a constant vector

which is a common default. The (RkAkPk) operation computes the Galerkin product of the

three matrices using SpMM by first computing A ∗ P = AP followed by R ∗AP = RAP .

Algorithm 5: AMG Setup
Input: A, B
Output: A0,. . . ,AM , P0,. . . ,PM

1 A0 ← A, B0 ← B;
2 for k = 0, . . . ,M do
3 Ck ← strength(Ak);
4 Aggk ← aggregate(Ck);
5 Tk, Bk+1 ← tentative(Aggk, Bk);
6 Pk ← prolongator(Ak, Tk);
7 Rk ← P T

k ;
8 Ak+1 ← (RkAkPk);

We compare the results for AMG on 2D and 3D Poisson problems with Dirichlet bound-

ary conditions. It is known that AMG performs well as a preconditioner on such problems

which allows us to focus on the merits of the SpMM method rather than on whether AMG

is suited for the problem. Table 6.5 lists the set of matrices used in our tests as well as the

number of unknowns and non-zeros. These tests were all computed with double precision.

Table 6.5. List of matrices used for AMG tests.
Matrix Abbr. Unknowns Non-zeros

2D Poisson 5pt 2-5-a 262144 1310720
2D Poisson 9pt 2-9-a 262144 2359296
3D Poisson 7pt 3-7-a 262144 1810432
3D Poisson 27pt 3-27-a 262144 6859000
2D Poisson 5pt 2-5-b 1048576 5238784
2D Poisson 9pt 2-9-b 1048576 9424900
3D Poisson 7pt 3-7-b 2097152 14581760
3D Poisson 27pt 3-27-b 2097152 55742968
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Figure 6.6 illustrates the results of our AMG tests with both the individual SpMM times

and the overall AMG preconditioner times. Our method outperforms the baseline method

by upwards of 3× in some cases. The Galerkin product represents 30% – 50% of total

time required by the setup phase of the preconditioner. Results shown in Bell et al. (2012)

indicate that the Galerkin product occupies 50% – 60% of the run time on similar matrices

using a Nvidia Tesla C2050 GPU. This seems to indicate that the underlying architecture

plays a role in the relative processing times across stages. In the case of matrix 3-7-a, the

Galerkin product occupies roughly half of the setup time, and our SpMM method is nearly

3× faster in that case, resulting in a speedup of 40%. There is no guarantee what the

resulting fill will be in the C matrix, but in practice, the resulting fill is relatively sparse for

multiplication with Poisson matrices.

By taking advantage of asynchronous updates enabled by DCSR, we are able to employ

specialized kernels based on row lengths. These row length optimized kernels perform

the sort and reduction operations within shared memory which is notably faster than

performing these operations within global memory. The efficient use of shared memory leads

to significant performance gains for the overall SpMM operation. The Galerkin product is

by far the largest single component of the setup phase, so improvements in this area will

lead to the greatest gains.



136

2−
5−

a
2−

9−
a

3−
7−

a
3−

27
−a

2−
5−

b
2−

9−
b

3−
7−

b
3−

27
−b

01234 Relative Speedup

 

 

D
C

SR
 S

pM
M

C
SR

 S
pM

M

2−
5−

a
2−

9−
a

3−
7−

a
3−

27
−a

2−
5−

b
2−

9−
b

3−
7−

b
3−

27
−b

0

0.
51

1.
52

Relative Speedup

 

D
C

SR
 A

M
G

C
SR

 A
M

G

F
ig

u
re

6.
6.

R
el

at
iv

e
sp

ee
du

p
fo

r
Sp

M
M

(A
bo

ve
)

an
d

A
M

G
(B

el
ow

)
us

in
g

D
C

SR
an

d
C

SR
.



BIBLIOGRAPHY

Michael D. Adams. Flow-Sensitive Control-Flow Analysis in Linear-Log Time. PhD thesis,
Indiana University, 2011.

Ole Agesen. The cartesian product algorithm. In Proceedings of the European Conference
on Object-Oriented Programming, page 226, 1995.

Torben Amtoft and Franklyn Turbak. Faithful translations between polyvariant flows and
polymorphic types. In Programming Languages and Systems, pages 26–40. Springer, 2000.

Christopher Anderson and Paola Giannini. Type checking for javascript. In In volume
WOOD of Electronic Notes in Theoretical Computer Science, 2004.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, February
2007. ISBN 052103311X.

Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan Parthasarathy, and P. Sadayap-
pan. Fast Sparse Matrix-vector Multiplication on GPUs for Graph Applications. In
Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’14, pages 781–792, Piscataway, NJ, USA, 2014a. IEEE
Press. ISBN 978-1-4799-5500-8. doi: 10.1109/SC.2014.69.

Arash Ashari, Naser Sedaghati, John Eisenlohr, and P. Sadayappan. An Efficient Two-
dimensional Blocking Strategy for Sparse Matrix-vector Multiplication on GPUs. In
Proceedings of the 28th ACM International Conference on Supercomputing, ICS ’14,
pages 273–282, New York, NY, USA, 2014b. ACM. ISBN 978-1-4503-2642-1. doi:
10.1145/2597652.2597678.

Haim Avron and Anshul Gupta. Managing Data-movement for Effective Shared-memory
Parallelization of Out-of-core Sparse Solvers. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC ’12,
pages 102:1–102:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press. ISBN
978-1-4673-0804-5.

Anindya Banerjee. A modular, polyvariant and type-based closure analysis. In ACM
SIGPLAN Notices, volume 32, pages 1–10. ACM, 1997.

Nathan Bell and Michael Garland. Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation, December 2008.

Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In SC ’09: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, pages 1–11, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-744-8. doi: 10.1145/1654059.1654078.



138

Nathan Bell and Michael Garland. Cusp: Generic Parallel Algorithms for Sparse Matrix
and Graph Computations, 2012. Version 0.3.0.

Nathan Bell, Steven Dalton, and Luke N. Olson. Exposing Fine-Grained Parallelism in
Algebraic Multigrid Methods. SIAM Journal on Scientific Computing, 2012.

Frédéric Besson. CPA beats ∞-CFA. In Proceedings of the 11th International Workshop on
Formal Techniques for Java-like Programs, page 7. ACM, 2009.

Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisti-
cated points-to analyses. In ACM SIGPLAN Notices, volume 44, pages 243–262. ACM,
2009.

Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven Autotuning of Sparse
Matrix-vector Multiply on GPUs. SIGPLAN Not., 45(5):115–126, January 2010. ISSN
0362-1340. doi: 10.1145/1837853.1693471.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction.
In Proceedings of the Symposium on Principles of Programming Languages, pages 343–354,
New York, NY, 1992. ACM.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, and Helmut Veith. Counterexample-
guided abstraction refinement. In Proceedings of Computer Aided Verification, pages
154–169. ACM, 2000.

Patrick Cousot. Types as abstract interpretations. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 316–331.
ACM, 1997.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106–130.
Paris, France, 1976.

Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invariant assertions:
Mathematical foundations. ACM Sigplan Notices, 12(8):1–12, 1977a.

Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of general-
ized type unions. In ACM SIGPLAN Notices, volume 12, pages 77–94. ACM, 1977b.

Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Symposium on Principles of Programming Languages, pages 238–252, Los Angeles,
CA, 1977c. ACM Press, New York.

Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In
Proceedings of the Symposium on Principles of Programming Languages, pages 269–282,
San Antonio, TX, 1979. ACM Press, New York.

Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation, invited paper. In Proceedings of
the International Workshop on Programming Language Implementation and Logic Pro-
gramming, Leuven, Belgium, 13-17 August 1992, Lecture Notes in Computer Science 631,
pages 269–295. Springer-Verlag, Berlin, Germany, 1992.



139

Olivier Danvy. A new one-pass transformation into monadic normal form. In Compiler
Construction, pages 77–89. Springer, 2003.

Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Softw., 38(1):1:1–1:25, December 2011. ISSN 0098-3500.

Christopher Earl, Matthew Might, and David Van Horn. Pushdown control-flow analysis of
higher-order programs: Precise, polyvariant and polynomial-time. In Scheme Workshop,
August 2010.

Christopher Earl, Ilya Sergey, Matthew Might, and David Van Horn. Introspective pushdown
analysis of higher-order programs. In International Conference on Functional Program-
ming, pages 177–188, September 2012.

ECMA. ECMA-262 (ECMAScript Specification). ECMA, 5.1 edition, June 2011.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In ACM Sigplan Notices, volume 28, pages 237–247. ACM,
1993.

Michael Garland. Sparse Matrix Computations on Manycore GPU’s. In Proceedings of the
45th Annual Design Automation Conference, DAC ’08, pages 2–6, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-115-6. doi: 10.1145/1391469.1391473.

Michael Garland and David B. Kirk. Understanding Throughput-oriented Architectures.
Commun. ACM, 53(11):58–66, November 2010. ISSN 0001-0782.

JohnR. Gilbert, Steve Reinhardt, and ViralB. Shah. High-Performance Graph Algorithms
from Parallel Sparse Matrices. In Bo Kågström, Erik Elmroth, Jack Dongarra, and
Jerzy Waśniewski, editors, Applied Parallel Computing. State of the Art in Scientific
Computing, volume 4699 of Lecture Notes in Computer Science, pages 260–269. Springer
Berlin Heidelberg, 2007. ISBN 978-3-540-75754-2.

Thomas Gilray and Matthew Might. A survey of polyvariance in abstract interpretations.
In Proceedings of the Symposium on Trends in Functional Programming, May 2013a.

Thomas Gilray and Matthew Might. A unified approach to polyvariance in abstract
interpretations. In Proceedings of the Workshop on Scheme and Functional Programming,
November 2013b.

Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn.
Pushdown control-flow analysis for free. Proceedings of the Symposium on the Principals
of Programming Languages (POPL), January 2016.

Joseph L. Greathouse and Mayank Daga. Efficient Sparse Matrix-vector Multiplication
on GPUs Using the CSR Storage Format. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC ’14,
pages 769–780, Piscataway, NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-5500-8. doi:
10.1109/SC.2014.68.

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of javascript. In
Proceedings of the European Conference on Object-oriented Programming, pages 126–150,
Berlin, Heidelberg, 2010.



140

Anshul Gupta, Seid Koric, and Thomas George. Sparse Matrix Factorization on Massively
Parallel Computers. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages 1:1–1:12, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-744-8. doi: 10.1145/1654059.1654061.

Dwight Guth. A formal semantics of python 3.3. Master’s thesis, University of Illinois at
Urbana-Champaign, July 2013.

Williams Ludwell Harrison. The interprocedural analysis and automatic parallelization of
Scheme programs. Lisp and Symbolic Computation, 1989.

Matthew Hennessy. The semantics of programming languages: an elementary introduction
using structural operational semantics. John Wiley & Sons, 1990.

Stefan Holdermans and Jurriaan Hage. Polyvariant flow analysis with higher-ranked poly-
morphic types and higher-order effect operators. In ACM Sigplan Notices, volume 45,
pages 63–74. ACM, 2010.

Paul Hudak. A semantic model of reference counting and its abstraction (detailed summary).
In Proceedings of the 1986 ACM conference on LISP and functional programming, pages
351–363. ACM, 1986.

Eun-jin Im, Eun-jin Im, Katherine Yelick, and Katherine Yelick. Optimization of Sparse
Matrix Kernels for Data Mining. In First SIAM Conf. on Data Mining, 2000.

Suresh Jagannathan and Stephen Weeks. A unified treatment of flow analysis in higher-order
languages. In Proceedings of the Symposium on Principles of Programming Languages,
pages 393–407, January 1995.

Suresh Jagannathan, Stephen Weeks, and Andrew Wright. Type-directed flow analysis for
typed intermediate languages. In International Static Analysis Symposium, pages 232–249.
Springer, 1997.

Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and
loving it: Must-alias analysis for higher-order languages. In Proceedings of the symposium
on Principles of programming languages, pages 329–341. ACM, 1998.

Maria Jenkins, Leif Andersen, Thomas Gilray, and Matthew Might. Concrete and abstract
interpretation: Better together. In Workshop on Scheme and Functional Programming,
2015.

J. Ian Johnson. AAC complexity analysis discussion. Unpublished correspondence., 2015.

J. Ian Johnson and David Van Horn. Abstracting abstract control. In Proceedings of the
ACM Symposium on Dynamic Languages, October 2014.

J. Ian Johnson, Nicholas Labich, Matthew Might, and David Van Horn. Optimizing
abstract abstract machines. In Proceedings of the International Conference on Functional
Programming, September 2013.

Neil D. Jones and Steven S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Symposium on principles of
programming languages, pages 66–74, 1982.



141

Gilles Kahn. Natural Semantics. Springer, 1987.

George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In ACM SIGPLAN Notices, volume 48, pages 423–434. ACM, 2013.

Andrew Kennedy. Compiling with continuations, continued. In Proceedings of the Inter-
national Conference on Functional Programming, pages 177–190, New York, NY, 2007.
ACM.

Jeremy Kepner and John Gilbert. Graph Algorithms in the Language of Linear Algebra.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2011. ISBN
0898719909, 9780898719901.

Khronos Group. The OpenCL Specification, September 2011.

James King, Thomas Gilray, Robert M. Kirby, and Matthew Might. Dynamic Sparse-Matrix
Allocation on GPUs. In To Appear at the International SuperComputing Conference, ISC
2016, June 2016.

Ruud Koot and Jurriaan Hage. Type-based exception analysis for non-strict higher-order
functional languages with imprecise exception semantics. In Proceedings of the 2015
Workshop on Partial Evaluation and Program Manipulation, pages 127–138. ACM, 2015.

Moritz Kreutzer, Georg Hager, Gerhard Wellein, Holger Fehske, and Alan R. Bishop. A
unified sparse matrix data format for modern processors with wide SIMD units. CoRR,
abs/1307.6209, 2013.

Ondrej Lhoták. Program analysis using binary decision diagrams. PhD thesis, McGill
University, 2006.

Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to analysis: is it worth it? In
Compiler Construction, pages 47–64. Springer, 2006.

Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 18(1):3, 2008.

Donglin Liang, Maikel Pennings, and Mary Jean Harrold. Evaluating the impact of
context-sensitivity on andersen’s algorithm for java programs. In ACM SIGSOFT Software
Engineering Notes, volume 31, pages 6–12. ACM, 2005.

Shuying Liang and Matthew Might. Hash-flow taint analysis of higher-order pograms. In
Proceedings of the Conference on Programming Language Analysis for Security, June 2012.

Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Efficient Sparse
Matrix-vector Multiplication on x86-based Many-core Processors. In Proceedings of the
27th International ACM Conference on International Conference on Supercomputing, ICS
’13, pages 273–282, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2130-3. doi:
10.1145/2464996.2465013.

Mario Mendez-Lojo, Martin Burtscher, and Keshav Pingali. A GPU implementation of
inclusion-based points-to analysis. In Proceedings of the Symposium on Principles and
Practice of Parallel Programming, pages 107–116, New York, NY, 2012. ACM.



142

Jan Midtgaard. Control-flow analysis of functional programs. ACM Computing Surveys, 44
(3):10:1–10:33, Jun 2012.

Matthew Might. Environment Analysis of Higher-Order Languages. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, 2007.

Matthew Might. Abstract interpreters for free. In Static Analysis Symposium, pages 407–421,
September 2010.

Matthew Might and Panagiotis Manolios. A posteriori soundness for non-deterministic ab-
stract interpretations. In Proceedings of the 10th International Conference on Verification,
Model Checking, and Abstract Interpretation, pages 260–274, January 2009.

Matthew Might and Olin Shivers. Improving flow analyses via ΓCFA: abstract garbage
collection and counting. In ACM SIGPLAN Notices, volume 41, pages 13–25. ACM,
2006.

Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploiting the k-
CFA paradox: Illuminating functional vs. object-oriented program analysis. In Proceedings
of the International Conference on Programming Language Design and Implementation,
pages 305–315, June 2010.

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity
for points-to analysis for java. ACM Transactions on Software Engineering Methodology,
14(1):1–41, January 2005.

Eugenio Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, july 1991.
ISSN 0890-5401. doi: 10.1016/0890-5401(91)90052-4.

Alexander Monakov, Anton Lokhmotov, and Arutyun Avetisyan. Automatically Tuning
Sparse Matrix-Vector Multiplication for GPU Architectures. In YaleN. Patt, Pierfrancesco
Foglia, Evelyn Duesterwald, Paolo Faraboschi, and Xavier Martorell, editors, High Perfor-
mance Embedded Architectures and Compilers, volume 5952 of Lecture Notes in Computer
Science, pages 111–125. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-11514-1.

Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java,
volume 41. ACM, 2006.

Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis.
Springer, 2004.

CUDA CUSPARSE Library. NVIDIA, August 2010.

Oak Ridge National Lab. Titan supercomputer, 2016. URL
https://www.olcf.ornl.gov/titan/.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kruger, Aaron Lefohn,
and Timothy J. Purcell. A survey of general-purpose computation on graphics hardware.
In Computer Graphics Forum, volume 26, pages 80–113, 2007.

Nicholas Oxhøj, Jens Palsberg, and Michael I Schwartzbach. Making type inference practical.
In ECOOP’92 European Conference on Object-Oriented Programming, pages 329–349.
Springer, 1992.



143

Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to intersection
and union types. Journal of functional programming, 11(03):263–317, 2001.

G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. In Theoretical Computer
Science 1, pages 125–159, 1975.

Gordon D Plotkin. A structural approach to operational semantics. 1981.

Joe Gibbs Politz, Matthew J. Carroll, Benjamin S. Lerner, and Shriram Krishnamurthi. A
tested semantics for getters, setters, and eval in javascript. In Proceedings of the Dynamic
Languages Symposium, 2012.

Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary Hall. EigenCFA: Accel-
erating flow analysis with GPUs. In Proceedings of the Symposium on the Principals of
Programming Languages (POPL), pages 511–522, January 2010.

Racket Community. Racket programming language, 2015. URL http://racket-lang.org/.

James F. Ranson, Howard J. Hamilton, and Philip W.L. Fong. A semantics of Python in
Isabelle/HOL. Technical Report CS-2008-04, Department of Computer Science, University
of Regina, Regina, Saskatchewan, December 2008.

I. Reguly and M. Giles. Efficient sparse matrix-vector multiplication on cache-based
GPUs. In Innovative Parallel Computing (InPar), 2012, pages 1–12, May 2012. doi:
10.1109/InPar.2012.6339602.

Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74(2):358–366, 1953.

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2nd edition, 2003. ISBN 0898715342. URL
Saad:2003:IMS.

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave
Clarke, and Frank Piessens. Monadic abstract interpreters. In ACM SIGPLAN Notices,
volume 48, pages 399–410. ACM, 2013.

Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis.
Program flow analysis: Theory and applications, pages 189–234, 1981.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA, May 1991.

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhotak. Pick your contexts well:
Understanding object-sensitivity. In Symposium on Principles of Programming Languages,
pages 17–30, January 2011.

Gideon Joachim Smeding. An executable operational semantics for python. Master’s thesis,
Universiteit Utrecht, January 2009.

Bor-Yiing Su and Kurt Keutzer. clSpMV: A Cross-Platform OpenCL SpMV Framework
on GPUs. In Proceedings of the 26th ACM International Conference on Supercomputing,
ICS ’12, pages 353–364, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1316-2. doi:
10.1145/2304576.2304624.



144

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5(2):285–309, 1955.

David Van Horn. The Complexity of Flow Analysis in Higher-Order Languages. PhD thesis,
Mitchom School of Computer Science, Brandeis University, Boston, MA, August 2009.

David Van Horn and Harry G. Mairson. Deciding k-CFA is complete for EXPTIME. ACM
Sigplan Notices, 43(9):275–282, 2008.

David Van Horn and Matthew Might. Abstracting abstract machines. In International
Conference on Functional Programming, page 51, Sep 2010.

Dimitrios Vardoulakis and Olin Shivers. CFA2: a context-free approach to control-flow
analysis. In Proceedings of the European Symposium on Programming, volume 6012,
LNCS, pages 570–589, 2010.

Hidde Verstoep and Jurriaan Hage. Polyvariant cardinality analysis for non-strict higher-
order functional languages: Brief announcement. In Proceedings of the 2015 Workshop on
Partial Evaluation and Program Manipulation, pages 139–142. ACM, 2015.

Richard Wilson Vuduc. Automatic Performance Tuning of Sparse Matrix Kernels. PhD
thesis, 2003. AAI3121741.

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and James
Demmel. Optimization of Sparse Matrix-vector Multiplication on Emerging Multicore
Platforms. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, SC
’07, pages 38:1–38:12, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-764-3. doi:
10.1145/1362622.1362674.

Glynn Winskel. The formal semantics of programming languages: an introduction. MIT
press, 1993.

Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: An effective polyvariant
flow analysis. In Proceedings of the ACM Transactions on Programming Languages and
Systems, pages 166–207, January 1998.

Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. yaSpMV: Yet Another SpMV
Framework on GPUs. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’14, pages 107–118, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2656-8. doi: 10.1145/2555243.2555255.

Xintian Yang, Srinivasan Parthasarathy, and P. Sadayappan. Fast Sparse Matrix-vector
Multiplication on GPUs: Implications for Graph Mining. Proc. VLDB Endow., 4(4):
231–242, January 2011. ISSN 2150-8097.


