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We present our recent experience working to design parallel functional control-flow analysis (CFA) using an encoding in
Datalog and underlying relational algebra implemented for SIMD coprocessors and supercomputers. Control-flow analysis
statically models the possible propagations of data and control through a target program, finitely obtaining a bound on
reachable expressions and environments and on possible return and argument values. We used Soufflé, a parallel CPU-based
Datalog implementation from Oracle labs, and worked toward a new MPI-based distributed hash join implementation and
an extension of the GPU-based relational algebra library RedFox.

In this paper, we provide introductions to functional flow analysis, Datalog, MPI, and CUDA, explaining the total process
we are working on to bring these components together in an analysis pipeline toward the end of scaling functional program
analyses by extracting their intrinsic parallelism in a principled manner.
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1 INTRODUCTION
A control-flow analysis (CFA) of a functional programming language models the propagation of data flows and
control flows through a target program, across all possible executions. In static analyses of functional lan-
guages generally, a model of where functional values (i.e., lambdas, closures) can flow is required to model
where control can flow from a call site, and vice versa. At a call site in Scheme, (f x), the possible values for
f determine which lambda bodies can be reached. Likewise, the possible callers for the lambda that binds f,
(lambda (. . . f . . .) . . .), influence the lambdas that can flow into f. This mutual dependence of data flow
and control flow can be handled using an abstract interpretation, simultaneously modeling all interdependent
language features. There are systematic approaches to designing analyses such as these, however the traditional
worklist algorithms used to implement them in practice are inefficient and have difficulty scaling. Even with op-
timizations such as global-store widening and flat environments, the analysis is inO (n3) in the flow-insensitive
case or in O (n4) in the flow-sensitive case. Using more advanced forms of polyvariance or context-sensitivity,
the analysis becomes significantly more expensive.
In this paper, we describe our ongoing work to encode these analyses as declarative datalog programs and

implement them as highly parallel relational algebra (RA), on the GPU and across many CPUs. Relational alge-
bra operations, derived from Datalog analysis specifications, are computationally intensive and memory-bound
in nature. GPUs provide massive fine-grained parallelism and great memory bandwidth, potentially making
them the ideal target for solving these operations. We use Redfox (Wu et al. 2014), an open source tool which
executes queries expressed in a specialized query language on GPUs. We also modify Redfox, adding capabilities
to perform fixed-point iterations essential for solving RA operations derived from Datalog. We are also pursu-
ing a Message Passing Interface (MPI)-based backend for solving RA operations across many compute nodes
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on a network. This approach is also particularly promising, given that HPC is increasingly mainstream and
supercomputers are getting faster cores and lower latency interconnects.

2 CONTROL-FLOW ANALYSIS
This section introduces control-flow analysis by instantiating it for the continuation-passing-style (CPS) λ-
calculus. We follow the abstracting abstract machines (AAM) methodology, a systematic process for developing
a static analysis (an approximating semantics) from a precise operational semantics of an abstract machine.
Static analysis by abstract interpretation proves properties of a program by running code through an inter-

preter powered by an abstract semantics that approximates the behavior of an exact concrete semantics. This
process is a general method for analyzing programs and serves applications such as program verification, mal-
ware/vulnerability detection, and compiler optimization, among others (Cousot and Cousot 1976, 1977, 1979;
Midtgaard 2012). Van Horn and Might’s approach of abstracting abstract machines (AAM) uses abstract interpre-
tation of abstract machines for control-flow analysis (CFA) of functional (higher-order) programming languages
(Johnson et al. 2013; Might 2010; Van Horn and Might 2010). The AAMmethodology is flexible and allows a high
degree of control over how program states are represented. AAM provides a general method for automatically
abstracting an arbitrary small-step abstract-machine semantics to obtain an approximation in a variety of styles.
Importantly, one such style aims to focus all unboundedness in a semantics on the machine’s address-space.
This makes the strategy used for the allocation of addresses crucial to the tradeoff struck between precision and
complexity (Gilray et al. 2016a), and results in a highly flexible and tunable analysis infrastructure. More broadly,
the approach has been used to instantiate both traditional finite flow analyses and heavy-weight program veri-
fication (Nguyen et al. 2014).

2.1 A Concrete Operational Semantics
This section reviews the process of producing a formal operational semantics for a simple language (Plotkin
1981), specifically, the untyped λ-calculus in continuation-passing style (CPS). CPS constrains call sites to tail
position so that functions may never return; instead, callers explicitly pass a continuation forward to be invoked
on the return value (Plotkin 1975). This makes our semantics tail recursive (small-step) and easier to abstract
while entirely eliding the challenges of manually managing a stack and its abstraction, a process previously
discussed in the context of AAM (Johnson and Van Horn 2014; Van Horn and Might 2010). Using an AAM that
explicitly models the stack in a precise manner, while allowing for adjustable allocation, has also been recently
addressed (Gilray et al. 2016b).
The grammar structurally distinguishes between call-sites call and atomic-expressions ae:

call ∈ Call ::= (ae ae . . . ) | (halt)
lam ∈ Lam ::= (λ (x . . . ) call)

ae ∈ AE ::= lam | x
x ∈ Var is a set of program variables

Instead of specifically affixing each expression with a unique label, we assume two identical expressions occur-
ring separately in a program are not equal. While a direct-style language with a variety of continuations (e.g.,
argument continuations, let-continuations, etc.), or extensions such as recursive-binding forms, conditionals,
mutation, or primitive operations, would add complexity to any semantics, they do not affect the concepts we
are exploring and so are left out.
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Wedefine the evaluation of programs in this language using a relation (→Σ), over states of an abstract-machine,
which determines how the machine transitions from one state to another. States (ς ) range over control expres-
sion (a call site), binding environment, and value store components:

ς ∈ Σ ≜ Call × Env × Store
ρ ∈ Env ≜ Var⇀ Addr

σ ∈ Store ≜ Addr ⇀ Value

a ∈ Addr ≜ Var × N
v ∈ Value ≜ Clo

clo ∈ Clo ≜ Lam × Env
Environments (ρ) map variables in scope to an address for the visible binding. Value stores (σ ) map these
addresses to values (in this case, closures); these may be thought of as a model of the heap. Both these functions
are partial and accumulate points as execution progresses.
Evaluation of atomic expressions is handled by an auxiliary function (A) which produces a value (clo) for an

atomic expression in the context of a state (ς ). This is done by a lookup in the environment and store for variable
references (x ), and by closure creation for λ-abstractions (lam). In a language containing syntactic literals, these
would be translated into equivalent semantic values here.

A : AE × Σ⇀ Value

A (x , (call, ρ, σ )) ≜ σ (ρ (x ))

A (lam, (call, ρ, σ )) ≜ (lam, ρ)

The transition relation (→Σ) : Σ ⇀ Σ yields at most one successor for a given predecessor in the state-space
Σ. This is defined:

ς︷                          ︸︸                          ︷
((aef ae1 . . . aej), ρ,σ ) →Σ (call′, ρ ′,σ ′)

where ((λ (x0 . . . x j) call′), ρλ ) = A (aef , ς )

vi = A (aei , ς )

ρ ′ = ρλ[xi 7→ ai ]
σ ′ = σ [ai 7→ vi ]
ai = (xi , |dom(σ ) |)

Execution steps to the call-site body of the lambda invoked (as given by the atomic-evaluation of aef ). This
closure’s environment (ρλ ) is extended with a binding for each variable xi to a fresh address ai . A particular
strategy for allocating a fresh address is to pair the variable being allocated for with the current number of
points in the store (a value that increases after each set of new allocations). The store is extended with the
atomic evaluation of aei for each of these addresses ai . A state becomes stuck if (halt) is reached or if the
program is malformed (e.g., a free variable is encountered).
To fully evaluate a program call0 using these transition rules, we inject it into our state space using a helper
I : Call→ Σ:

I (call) ≜ (call,∅,∅)

We may now perform the standard lifting of (→Σ) to a collecting semantics defined over sets of states:

s ∈ S ≜ P (Σ)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:4 • Thomas Gilray and Sidharth Kumar

Our collecting relation (→S ) is a monotonic, total function that gives a set including the trivially reachable state
I (call0) plus the set of all states immediately succeeding those in its input.

s →S {ς ′ | ς ∈ s ∧ ς →Σ ς
′} ∪ {I (call0)}

If the program call0 terminates, iteration of (→S ) from ⊥ (i.e., the empty set ∅) does as well. That is, (→S )
n (⊥)

is a fixed point containing call0’s full program trace for some n ∈ N whenever call0 is a terminating program.
No such n is guaranteed to exist in the general case (when call0 is a non-terminating program) as our language
(the untyped CPS λ-calculus) is Turing-equivalent, our semantics is fully precise, and the state-space we defined
is infinite.

2.2 An Abstract Operational Semantics
Now that we have formalized program evaluation using our concrete semantics as iteration to a (possibly in-
finite) fixed point, we are ready to design a computable approximation of this fixed point (the exact program
trace) using abstract interpretation. Previous work has explored a wide variety of approaches to systematically
abstracting a semantics like these (Johnson et al. 2013; Might 2010; Van Horn and Might 2010). Broadly con-
strued, the nature of these changes is to simultaneously finitize the domains of our machine while introducing
non-determinism both into the transition relation (multiple successor states may immediately follow a predeces-
sor state) and the store (multiple values may become conflated at a single address). We use a finite address space
to cut the otherwise mutually recursive structure of values (closures) and environments. (Without addresses
and a value store, environments map variables directly to closures and closures contain environments). A finite
address space yields a finite state space overall and ensures the computability of our analysis. Typographically,
components unique to this abstract abstract machine wear hats so we can tell them apart without confusing
essential underlying roles:

ς̂ ∈ Σ̂ ≜ Call × Ênv ×EStore
ρ̂ ∈ Ênv ≜ Var ⇀ EAddr

σ̂ ∈ EStore ≜ EAddr → EValue
â ∈ EAddr ≜ Var

v̂ ∈ EValue ≜ P (Ĉlo)
ĉlo ∈ Ĉlo ≜ Lam × Ênv

Value stores are now total functions mapping abstract addresses to a flow set (v̂) of zero or more abstract closures.
This allows a range of values to merge and inhabit a single abstract address, introducing imprecision into our
abstract semantics, but also allowing for a finite state space and a guarantee of computability. To begin, we use a
monovariant address set EAddr with a single address for each syntactic variable. This choice (and its alternatives)
is at the heart of our present topic and will be returned to shortly.
Evaluation of atomic expressions is handled by an auxiliary function (Â) which produces a flow set (v̂ ) for

an atomic expression in the context of an abstract state (ς̂ ). In the case of closure creation, a singleton flow set
is produced.

Â : AE × Σ̂⇀ EValue
Â (x , (call, ρ̂, σ̂ )) ≜ σ̂ (ρ̂ (x ))

Â (lam, (call, ρ̂, σ̂ )) ≜ {(lam, ρ̂)}
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The abstract transition relation ({∧

Σ
) ⊆ Σ̂ × Σ̂ yields any number of successors for a given predecessor in the

state-space Σ̂. As mentioned when introducing AAM, there are two fundamental changes required using this
approach. Because abstract addresses can become bound to multiple closures in the store and atomic evaluation
produces a flow set containing zero or more closures, one successor state results for each closure bound to the
address for aef . Also, due to the relationality of abstract stores, we can no longer use strong update when
extending the store σ̂ ′.

ς̂︷                          ︸︸                          ︷
((aef ae1 . . . aej), ρ̂, σ̂ ) {∧

Σ
(call′, ρ̂ ′, σ̂ ′)

where ((λ (x0 . . . x j) call′), ρ̂λ ) ∈ Â (aef , ς̂ )

v̂i = Â (aei , ς̂ )

ρ̂ ′ = ρ̂λ[xi 7→ âi ]
σ̂ ′ = σ̂ ⊔ [âi 7→ v̂i ]
âi = xi

Aweak update is performed on the store instead which results in the least upper bound of the existing store and
each new binding. Join on abstract stores distributes point-wise:

σ̂ ⊔ σ̂ ′ ≜ λâ. σ̂ (â) ∪ σ̂ ′(â)
Unless it is desirable, and provably safe to do so (Might and Shivers 2006), we never remove closures already
seen. Instead, we strictly accumulate every closure bound to each â (i.e., abstract closureswhich simulate closures
bound to addresses which â simulates) over the lifetime of the program. A flow set for an address â indicates
a range of values which over-approximates all possible concrete values that can flow to any concrete address
approximated by â. For example, if a concretemachine binds (y, 345) 7→ clo1 and (y, 903) 7→ clo2, its monovariant
approximation might bind y 7→ {ĉlo1, ĉlo2}. Precision is lost for (y, 345) both because its value has been merged
with ĉlo2, and because the environments for ĉlo1 and ĉlo2 in-turn generalize over many possible addresses for
their free variables (the environment in ĉlo1 is less precise than that in clo1).
To approximately evaluate a program according to these abstract semantics, we first define an abstract in-

jection function, Î, where the store begins as a function, ⊥, that maps every abstract address to the empty
set.

Î : Call→ Σ̂

Î (call) ≜ (call,∅,⊥)
We again lift ({∧

Σ
) to obtain a collecting semantics ({∧

S
) defined over sets of states:

ŝ ∈ Ŝ ≜ P (Σ̂)
Our collecting relation ({∧

S
) is a monotonic, total function that gives a set including the trivially reachable

finite-state Î (call0) plus the set of all states immediately succeeding those in its input.

ŝ {∧

S
ŝ ′,where

ŝ ′ = {ς̂ ′ | ς̂ ∈ ŝ ∧ ς̂ {∧

Σ
ς̂ ′} ∪ {Î (call0)}

Because EAddr (and thus Σ̂) is now finite, we know the approximate evaluation of even a non-terminating call0
will terminate. That is, for some n ∈ N, the value ({∧

S
)n (⊥) is guaranteed to be a fixed point containing an

approximation of call0’s full concrete program trace (Tarski 1955).
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2.2.1 Widening and Extension to Larger Languages. Various forms of widening and further approximations
may be layered on top of the naı̈ve analysis ({∧

S
). One such approximation is store widening, which is necessary

for our analysis to be polynomial-time in the size of the program. This structurally approximates the analysis
above, where each state contains a whole store, by pairing a set of states without stores, with a single, global
store that overapproximates all possible bindings. This global store is maintained as the least-upper-bound of
all bindings that are encountered in the course of analysis.
Setting up a semantics for real language features such as conditionals, primitive operations, direct-style recur-

sion, or exceptions, is no more difficult, if more verbose. Supporting direct-style recursion, for example, requires
an explicit stack as continuations are no longer baked into the source text by CPS conversion. Handling other
forms is often as straightforward as including an additional transition rule for each.

3 DATALOG-BASED FLOW ANALYSIS
In this section, we will give an overview of Datalog as a declarative logic-programming language, show how it
may be executed using a bottom-up fixed-point algorithm, and discuss our encoding of abstract semantics from
the previous section.

3.1 Datalog
A datalog program consists of a set of relations, along with the rules pertaining to them. A relation encodes a
set of tuples known as facts. For example, if we have a relation Parent, the fact Parent (p, c ) may assert that p is a
parent of c . A rule then takes the form a0 :− a1, . . . ,aj where a comma denotes conjunction and each atom ai
is of the form r (x , . . .), where r is a relation and each x is a variable. In Datalog the turnstile means “is implied
by”; this is because the rules are formally an implication form of a Horn clause. Horn clauses are disjunctions
where all but one of the atoms are negated: a0 ∨¬a1 ∨ . . . ∨¬aj . This is the same as a0 ∨¬(a1 ∧ . . . ∧ aj ) by De
Morgan’s laws, which is the same as an implication: a0 ⇐= a1 ∧ . . . ∧ aj . For example, a rule for computing
grandparents can be specified:

GrandParent (дp, c ) :− Parent (дp,p), Parent (p, c ).

3.2 Datalog solvers
A number of strategies exist for executing a datalog program—that is, finding a sound least-fixed-point that
contains all the input facts and obeys every rule. Unlike solvers for Prolog and other logic programming systems,
bottom-up approaches have tended to prevail (Ullman 1989) although this can depend on extensions to the
language and its use. Bottom-up solving begins with the set of facts provided as input, and iterates a monotonic
function encoding the set of rules until a least-fixed-point is reached. The data structure for relations and the
operation of these increasing iterations varies by approach.
The datalog solver bddbddb uses binary decision diagrams (BDDs) to encode relations and supports efficient

relational algebra (RA) over these structures (Whaley et al. 2005). BDDs are decision trees that encode arbitrary
relations by viewing each bit in the input as a binary decision. They have the potential to be a compact and
efficient representation of a relation, but have aworst-case exponential space complexity and are highly sensitive
to variable ordering (in what order are bits of input branched on).
The datalog solver Soufflé uses the semi-naı̈ve bottomup algorithmwith partial-evaluation-based optimization

(Scholz et al. 2016). A relational algebra machine (RAM) executes the program in bottom-up fashion by using
efficient underlying data structures for relations (such as prefix trees) and directly selects and propagates tuples
in a series of nested loops. This RAM then has a partial-evaluation applied to it that optimizes the interpretation
for the specific set of datalog rules. The tool accepts a datalog program as input, performs this partial evaluation
and writes a C++ program that parallelizes the outside loops of each RA operation using pthreads.
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3.3 Encoding CFA
Various program analysis have been implemented using Datalog. Both bddbddb and Soufflé presented program
analyses in their experiments. Another prominent example is the DOOP framework for Java (Smaragdakis et al.
2011), used to demonstrate a generalization of object-sensitive flow analysis.
To encode a control-flow analysis as a Datalog problem, we first represent the abstract syntax tree (AST) as a

set of relations where each expression and variable in the program has been enumerated. In the soufflé syntax,
the encoding for Lambda expressions, conditional expressions, and Variable references is as follows:

.decl SyntaxLambdaExp(e:Exp, x:Var, ebody:Exp) input

.decl SyntaxIfExp(e:Exp, x:Var, e0:Exp, e1:Exp) input

.decl SyntaxVarExp(e:Exp, x:Var) input

A tuple (e0,x , e1) in the SyntaxLambdaExp relation indicates that the expression e0 is a lambda with the formal
parameter x and the expression body e1. A tuple (e0,x , e1, e2) in the SyntaxIfExp relation indicates that the
expression e0 is a conditional branching on the variable x with the true branch e1 and false branch e2. A tuple
(e,x ) in the SyntaxVarExp relation indicates that the expression e is a variable reference returning the value of
variable x .

We then encode the constraints of our analysis directly as rules in datalog, such as:

StoreEdge(x,y) :-
SyntaxVarExp(e,x),
ReachableExp(e,kaddr),
KStore(kaddr,y,ebody,kaddr0).

This rule adds a flow from x to y when a reachable expression e is returning the value at x and its continuation
binds the variable y.

4 MANY-NODE INNER-JOINS AND FUTURE WORK
Modern supercomputers’ use of very low latency interconnect networks and highly optimized compute cores
opens up the possibility of implementing highly parallel relational algebra using Message-Passing Interface
(MPI). MPI is a portable standard library interface for writing parallel programs in a HPC setting and has been
highly optimized on a variety of computing infrastructures, from small clusters to high-end supercomputers.

4.1 Parallel Join
Radix-hash join andmerge-sort join are two of themost popularly used parallel implementations of the inner join
operation. Both these algorithms involve partitioning the input data so that they can be efficiently distributed
to the participating processes. For example, in the radix-hash approach a tuple is assigned to a process based
on the hash output of the column-value on which the join operation is keyed. With this approach, tuples on
both relations that share the same hash value are always assigned to the same process. For every tuple in the
left-hand side of the join relation is matched against all the tuples of the right-hand side of the join relation. Fast
lookup data-structures like hash tables, or radix-trees (TRIE) can be used to organize the tuples within every
process. The initial distribution of data using hashing reduces the overall computation overhead by a factor of
the number of processes (n).
More recently (Barthels et al. 2015, 2017), there has been a concerted effort to implement JOIN operations on

clusters using an MPI backend. The commonly used radix-hash join and merge-sort join have been re-designed
for this purpose. Both these algorithms involve a hash-based partitioning of data so that they are be efficiently
distributed to the participating processes and are designed such that inter-process communication is minimized.
In both of these implementations one-sided communication is used for transferring data between process. With
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one-sided communication the initiator of a data transfer request can directly access parts of the remote mem-
ory and has full control where the data will be placed. Read and write operations are executed without any
involvement of the target machine. This approach of data transfer involves minimal synchronization between
particiapting processes and have been shown to scale better that traditional two-sided communication. The
implementation of parallel join has shown promising performance numbers; for example, the parallel join algo-
rithm of (Barthels et al. 2017) ran successfully at 4,096 processor cores with up to 4.8 terabytes of input data.

4.2 Benchmarking: transitive closure
Computing the transitive closure of a graph involves repeated join operations until a fixed point is reached. We
use the previously discussed radix-hash join algorithm to distribute the tuples across all processes. The algorithm
can then be roughly divided into four phases: 1) Join 2) network communication 3) insertion 4) checking for a
fixed point. In our join phase every process concurrently computes the join output of the local tuples. In the next
phase every process sends the join output results to the relevant processes. This is a all-to-all communication
phase, which we implemet using MPI’s all to all routines. The next step involves inserting the join output result
received from the network to the output graph’s local partition. In the final step we check if the size of the
output graph changed on any process, if it does then we have not yet reached a fixed point and we continue to
another iteration of these 4 steps.
We performed a set of strong-scaling experiments to compute the transitive closure of graph with 412148

edges—the largest graph in the U. Florida Sparse Matrix set (Davis and Hu 2011). We used theQuartz supercom-
puter at the Lawrence Livermore National Laboratory (LLNL). For our runs, we varied the number of processes
from 64 to 2048. A fixed point was attained after 2933 iterations, with the resulting graph containing 1676697415
edges. As can be seen in Figure 1, our approach takes 462 seconds at 64 cores and 235 seconds at 2048 cores, corre-
sponds to an overall efficiency of 6.25%. We investigated these timings further by plotting the timing breakdown
of by the four major components (join, network communication, join, fixed-point check) of the algorithm. We
observe (see Figure 2) that for all our runs the total time is dominated by computation rather than communica-
tion; insert and join together tended to take up close to 90% of the total time. This is quite an encouraging result
as it shows that we are not bound primarily by the network bandwidth (at these scales and likely moderately
higher ones) and it gives us the opportunity to optimize the computation phase.

5 PARALLELIZING DATALOG ON THE GPU
ProgrammableGPUs providemassive fine-grained parallelism, higher raw computational throughput, and higher
memory bandwidth compared with multi-core CPUs. As a result they are a favorable alternative over traditional
CPUs when it comes to high throughput implementations of applications. GPU implementations can potentially
provide several orders of magnitude in performance improvement over traditional CPUs. As a result, GPU tech-
nology is increasingly widespread and has been successfully adopted by significant number of data-intensive
scientific applications such as molecular dynamics (Anderson et al. 2008), physical simulations (Mosegaard and
Srensen 2005), and ray tracing in graphics (Parker et al. 2010).

5.1 GPU architecture
Threads provide the finest level of parallelism in a GPU. A GPU application is composed of a series of multi-
threaded data-parallel kernels. Data-parallel kernels are composed of a grid of parallel work-units called Coop-
erative Thread Arrays (CTAs) which in turn consist of an array of threads. In such processors, threads within a
CTA are grouped into logical units known as warps that are mapped to SIMD units called Stream Multiproces-
sors (SMs) (see Figure 3). The programmer divides work into threads, threads map to thread blocks (CTAs), and
thread blocks map to a grid. The compute work distributor allocates thread blocks to SMs. Once a thread block
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is distributed to an SM the resources for the thread block are allocated (warps and shared memory) and threads
are divided into groups of (typically) 32 threads called warps.

5.2 Redfox

Streaming Multiprocessor (SM)

Cooperative Thread Arrays (blocks)
Threads

Fig. 3. High-level overview of GPU.

We use Redfox (Wu et al. 2014) a GPU-based open-source
tool to run the relational algebra (RA) kernels translated
from Datalog. Redfox is used for compiling and executing
queries expressed in a specialized query language on GPUs.
Typically, the parallelism involved in solving relational-
algebra operations on GPUs is challenging due to unstruc-
tured and irregular data access as opposed to other domain-
specific operations, such as those common to dense lin-
ear algebra. Redfox tackles these issues and provides an
ecosystem to accelerate relational computation including
algorithm design, system implementation, and compiler op-
timizations. It bridges the semantic gap between relational
queries and GPU execution models, allowing its clients to operate exclusively in terms of RA semantics, and
maintains significant performance speedup relative to the baseline CPU implementation.
Redfox takes advantage of the fine-grained massive parallelism offered by GPUs. It is comprised of (a) a

specialized language front-end that allows the specification of sequences of RA operations that combine to
form a query, (b) an RA to GPU compiler, (c) an optimized GPU implementation of select RA operators, and
(d) a supporting runtime. The relational data is stored as a key-value store to support a range of workloads
corresponding to queries over data sets. We use our own system to transform datalog queries into RA kernels.
Redfox provides a GPU implementation of the following set operations: union, intersection, difference, cross
product, inner-join, project and select. Among all the RA primitive operators, inner-join is the most complex
and is more compute intensive than the rest of the RA primitives. Another problemwith joins is that their output
size can vary, i.e. between zero to the product of the sizes of the two inputs. One of the salient contributions of
redfox is an optimal implementation of the join operation (Haicheng Wu and Yalamanchili 2014).

5.3 Fixed-point iterations with Redfox
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● Kernel 2
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● Kernel 0
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● Kernel 2

BLOCK 2
● Kernel 0

Start

End
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● Kernel 0
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● Kernel 0
● Kernel 1
● Kernel 2

BLOCK 2
● Kernel 0

COND

Fig. 4. Redfox execution with (right) and without (left)
conditional branches.

One of the major challenges in adapting redfox to solve RA
kernels derived from datalog queries was to perform fixed-
point iterations. For fixed-point iterations redfox needed
to process loops and, until now, Redfox was only used in
a sequential mode, where a block unconditionally transi-
tioned to the next block. In the original Redfox paper’s ex-
periments, the authors did use a fixed-point computation,
but had manually unrolled the benchmark to the needed
number of iterations. In our application, we need the abil-
ity to run basic blocks (each a straight-line sequence of RA
kernels), in a loop, until the relation in contention does not
change and the system reaches a fixed point—regardless of
how many loops this requires. In order to facilitate execu-
tion of loops in redfox, we have added conditional branches, that allows execution to choose a target basic block
based on the equality of two input relations. We used the COND kernel of GPU and use the outcome of the
kernel to schedule the target block. Typically, in fixed-point iterations we check if the values stored in relation
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after execution of a certain kernel changed or not, if it remains unchanged then we have attained a fixed point
and the execution can move forward, otherwise the set of kernel is executed again (see Figure 4).

5.4 Preliminary results
We evaluated the performance of Redfox in computing the transitive closure of large-sized graphs. For bench-
marking we used the open source graphs available at (Davis and Hu 2011). Out of all relation operations used
in computing the transitive closure, join is computationally the most complex. We found that the join opera-
tion manage to scale decently well with larger graphs. Time consumed performing join operation across 188
iterations for input graph of 25,674 edges (output size is 6,489,757 edges) took 3.6 seconds. Total time for other
kernal operation (project, union, copy) along with I/O time was 3.3 seconds. This total time (3.6 + 3.3 seconds)
is almost comparable to the time taken by the highly optimized code Souffle (5.6 seconds) to compute the transi-
tive closure of the same graph. We surmise, that Souffle is able to extract parallelism sufficient enough to solve
the problem for this graph. Our hypothesis is that the GPU performance may become significantly faster than
Souffle for very large scale graphs.

6 FUTURE WORK AND CONCLUSION
We have outlined a possible pipeline for extracting parallelism from a control-flow analysis in a principled way
and have implemented GPU-based and MPI-based transitive closure algorithms to experiment with parallizing
this kind of problem. We are also interested in writing PGAS based backends for our RA kernels. Partitioned
global address space (PGAS) is a commonly used parallel programming model, that follows the ideals of shared
memory access but operates in a distributed setting—it assumes a global memory address space that is logically
partitioned, portions of which are local to each process. The two main implementations of this programming
model are chapel (Chamberlain et al. 2007) and UPC++.
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